1
|
Lau YT, Tan HS. Acinetobacter baumannii subunit vaccines: recent progress and challenges. Crit Rev Microbiol 2024; 50:434-449. [PMID: 37211625 DOI: 10.1080/1040841x.2023.2215303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen that causes nosocomial infection with a high mortality rate in immunocompromised individuals. With the frequent emergence of multidrug-resistant A. baumannii strains that have rapidly gained resistance to most antibiotics, an extensive search for an effective A. baumannii vaccine is ongoing. Over the decade, many subunit vaccine candidates were identified using reverse vaccinology and in vivo animal studies for validation. Nineteen subunit vaccine candidates with a wide range of efficacy, from 14% to 100% preclinical survival rates, were included in this review. This article provides an updated review of several outer membrane proteins (Omp) that emerged as vaccine candidates with great potential, including OmpA, Omp34, Omp22 and BamA, based on their high conservancy, antigenicity, and immune protection against A. baumannii infection. However, there is still no licenced A. baumannii vaccine currently due to several practical issues that have yet to be resolved, such as inconsistencies between validation studies, antigen variability and insolubility. Moving forward, much investigation and innovation are still required to tackle these challenges for the regulatory approval of an A. baumannii subunit vaccine, including standardisation of immunisation study parameters, improving antigen solubility and the incorporation of nucleic acid vaccine technology.
Collapse
Affiliation(s)
- Yi Teng Lau
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Hu Y, Zhang X, Deng S, Yue C, Jia X, Lyu Y. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection: Are vaccines and adjuvants effective strategies? Front Microbiol 2023; 14:1049917. [PMID: 36760499 PMCID: PMC9905804 DOI: 10.3389/fmicb.2023.1049917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative opportunistic pathogen widely attached to the surface of medical instruments, making it one of the most common pathogens of nosocomial infection, and often leading to cross-infection and co-infection. Due to the extensive antibiotic and pan-resistance, A. baumannii infection is facing fewer treatment options in the clinic. Therefore, the prevention and treatment of A. baumannii infection have become a tricky global problem. The requirement for research and development of the new strategy is urgent. Now, non-antibiotic treatment strategies are urgently needed. This review describes the research on A. baumannii vaccines and antibacterial adjuvants, discusses the advantages and disadvantages of different candidate vaccines tested in vitro and in vivo, especially subunit protein vaccines, and shows the antibacterial efficacy of adjuvant drugs in monotherapy.
Collapse
Affiliation(s)
- Yue Hu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,*Correspondence: Changwu Yue ✉
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China,School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China,Xu Jia ✉
| | - Yuhong Lyu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'An, China,Yuhong Lyu ✉
| |
Collapse
|
3
|
Fereshteh S, Ajdary S, Sepehr A, Bolourchi N, Barzi SM, Haririzadeh Jouriani F, Riazi-Rad F, Shahcheraghi F, Badmasti F. Immunization with recombinant DcaP-like protein and AbOmpA revealed protections against sepsis infection of multi-drug resistant Acinetobacter baumannii ST2 Pas in a C57BL/6 mouse model. Microb Pathog 2023; 174:105882. [PMID: 36403713 DOI: 10.1016/j.micpath.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUNDS The prevalence of infections associated with multi-drug resistant (MDR) Acinetobacter baumannii is increasing worldwide. Therefore, the introduction of effective vaccines against this bacterium seems necessary. METHODS AbOmpA and DcaP-like protein were selected as promising and putative immunogenic candidates based on previous in silico studies. Three formulations including AbOmpA, DcaP-like protein, and AbOmpA + DcaP-like protein were injected into C57BL/6 mice three times with Alum adjuvant. The specific production of IgG antibodies (e.g. total IgG, IgG1 and IgG2c) and cytokines (e.g. IL-4, IL-6, and IL-17A), were evaluated. LD50% of MDR A. baumannii ST2Pas was measured using Probit's method. After the challenge with bacteria, a decrease in bacterial loads (DLs) in the lung and spleen of mice was measured. Then serum bactericidal assay was performed to determine the function of antibodies on day 42. In addition, histopathological examinations of the spleen and lung, the number of macrophage and neutrophil, as well as the rate of lymphocyte infiltration were assessed. RESULTS The highest level of total IgG was reported in the group immunized with DcaP-like protein on day 42. The survival rate of mice was 80% in the AbOmpA immunized group and 100% for the rest of two groups. DLs in the spleen of mice immunized with AbOmpA, DcaP-like protein, and combination form were 3.5, 3, and 3.4 Log10 (CFU/g), respectively. While in the lung, the DLs were 7.5 Log10 (CFU/g) for the AbOmpA group and 5 for the rest of two groups. The levels of IL-6, IL-4, and IL-17A were significantly decreased in all immunized groups after the bacterial challenge (except for IL-17A in the group of AbOmpA). The bactericidal effect of antibodies against DcaP-like protein was more effective. No histopathological damage was observed in the combination immunized group. The DcaP-like protein was more effective in neutrophil and macrophage deployment and decreased lymphocyte infiltration. CONCLUSION The results of immunization with AbOmpA + DcaP-like protein induced a protective reaction against the sepsis infection of MDR A. baumannii. It seems that in the future, these proteins can be considered as promising components in the development of the A. baumannii vaccine.
Collapse
Affiliation(s)
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Buchhorn de Freitas S, Hartwig DD. Promising targets for immunotherapeutic approaches against Acinetobacter baumannii. Microb Pathog 2022; 173:105855. [DOI: 10.1016/j.micpath.2022.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
5
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
6
|
Fereshteh S, Noori Goodarzi N, Sepehr A, Shafiei M, Ajdary S, Badmasti F. In Silico Analyses of Extracellular Proteins of Acinetobacter baumannii as Immunogenic Candidates. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e126559. [PMID: 36060914 PMCID: PMC9420209 DOI: 10.5812/ijpr-126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Background: Acinetobacter baumannii is an important nosocomial pathogen causing high morbidity and mortality in immunocompromised patients with prolonged hospitalization. Multidrug-resistant A. baumannii infections are on the rise worldwide. Therefore, the discovery of an effective vaccine against this bacterium seems necessary as a cost-effective and preventive strategy. Methods: In this present study, 35 genomes of A. baumannii strains were considered, and the extracellular proteins were selected, maximally having one transmembrane helix with high adhesion probability and no similarity to host proteins, as immunogenic candidates using the web tool Vaxign. Subsequently, the role of these selected proteins in bacterial pathogenesis was investigated using VICMpred. Then, the major histocompatibility complex class II, linear B-cell epitopes, and conservation of epitopes were identified using the Immune Epitope Database, BepiPred, and Epitope Conservancy Analysis, respectively. Finally, the B-cell discontinuous epitopes of each protein were predicted using ElliPro and plotted on the three-dimensional structure (3D) of the proteins. The role of the unknown proteins was predicted using the STRING database. Results: In this study, eight acceptable immunogenic candidates, including FilF, FimA, putative acid phosphatase, putative exported protein, subtilisin-like serine protease, and three uncharacterized proteins, were identified in A. baumannii. Conclusions: The results of the STRING database showed that these three uncharacterized proteins play a role in nutrition (heme utilization), peptide bond cleavage (serine peptidases), and cellular processes (MlaD protein). Extracellular proteins might play a catalyst role in the outer membrane protein-based vaccine of A. baumannii. Furthermore, this study proposed a list of potent immunogenic candidates of extracellular proteins.
Collapse
Affiliation(s)
| | | | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Corresponding Author: Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Naeimi Mazraeh F, Hasani A, Sadeghi J, Samadi Kafil H, Soroush Barhaghi MH, Yeganeh Sefidan F, Rishi Sharabiani H, Hematyar Y, Ahangarzadeh Rezaee M. High frequency of blaPER-1 gene in clinical strains of Acinetobacter baumannii and its association with quorum sensing and virulence factors. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
de Freitas SB, Wozeak DR, Neto AS, Cardoso TL, Hartwig DD. A hypothetical adhesin protein induces anti-biofilm antibodies against multi-drug resistant Acinetobacter baumannii. Microb Pathog 2021; 159:105112. [PMID: 34314810 DOI: 10.1016/j.micpath.2021.105112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/13/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
The increase in multidrug-resistant (MDR) Acinetobacter baumannii strains in hospital environments has generated great concern around the world. Biofilm is one of the forms of bacterial adaptation that is increasingly leading to antimicrobial resistance and therapeutic failure. The search for alternative therapeutic strategies, especially non-antibiotic-based, is urgently needed. In this study, we produce polyclonal antibodies (pAbs) in murine models against recombinant CAM87009.1 antigen, an A. baumannii fimbriae protein. The pAbs produced were isotyped and anti-biofilm activity evaluated in the A. baumannii ATCC® 19606 standard strain and nine MDR clinical isolates. All clinical isolates were analyzed for the presence of the cam87009.1 gene using the PCR technique, and one of the isolates did not have the gene in its genome. After four intraperitoneal immunizations (days 0, 14, 21, and 28) of mice with rCAM87009.1 and Freund's adjuvant, a significant antibody titer was detected by indirect enzyme-linked immunosorbent assay (ELISA) since the first immunization (1:6400), and the level increased until the 4th immunization (1:819,200). IgM, IgA, IgG1, IgG2a, IgG2b, and IgG3 isotypes were identified in the serum of immunized mice (P < 0.001). The anti-rCAM87009.1 pAb was able to inhibit biofilm formation in 80 % of the strains evaluated in this study, including the ATCC® 19606 strain. The rCAM87009.1 proves to be a promising target in the development of alternative strategies to control biofilm-forming in A. baumannii MDR strains.
Collapse
Affiliation(s)
- Stella Buchhorn de Freitas
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daniela Rodriguero Wozeak
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Amilton Seixas Neto
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thayná Laner Cardoso
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Badmasti F, Habibi M, Firoozeh F, Fereshteh S, Bolourchi N, Goodarzi NN. The combination of CipA and PBP-7/8 proteins contribute to the survival of C57BL/6 mice from sepsis of Acinetobacter baumannii. Microb Pathog 2021; 158:105063. [PMID: 34166729 DOI: 10.1016/j.micpath.2021.105063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Due to the emergence of multi-drug resistant Acinetobacter baumannii strains, there is an urgent need to develop several new strategies to control this bacterium. In this context, vaccination may be the best approach to reduce the morbidity and mortality associated with MDR isolates in vulnerable groups. Serum resistance factors have a key role in the pathogenesis of A. baumannii and can be considered as potential vaccine candidates. This project aimed to evaluate the immunological reactivity of CipA and PBP-7/8 as two serum resistance factors in a combination form against sepsis infections of A. baumannii. Recombinant proteins were obtained and immunological evaluations were performed against sepsis infection in the C57BL/6 mouse model. The data showed a statistically significant increase in total IgG levels in all three immunization regimens (CipA, PBP-7/8, and CipA + PBP-7/8) compared to the control group. The ratios of IgG2c/IgG1 in the CipA, PBP-7/8, and CipA + PBP-7/8 schedules were 8.7, 46.50, and 33.29, respectively. It appears that the immunization schedules developed a strong polarized Th1 response. The cytokine profiles of the three plans showed that IFN-γ was highly concentrated in the combination plan. However, the highest concentration of IL-17 belonged to the PBP-7/8 plan. In conclusion, the data of total IgG, survival rates and splenic bacterial loads showed that the CipA + PBP-7/8 plan was more effective than each protein individually.
Collapse
Affiliation(s)
- Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Iran.
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | | | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Mat Rahim N, Lee H, Strych U, AbuBakar S. Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development. Hum Vaccin Immunother 2021; 17:3784-3794. [PMID: 34106809 PMCID: PMC8437540 DOI: 10.1080/21645515.2021.1927412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2017, the World Health Organization (WHO) named A. baumannii as one of the three antibiotic-resistant bacterial species on its list of global priority pathogens in dire need of novel and effective treatment. With only polymyxin and tigecycline antibiotics left as last-resort treatments, the need for novel alternative approaches to the control of this bacterium becomes imperative. Vaccines against numerous bacteria have had impressive records in reducing the burden of the respective diseases and addressing antimicrobial resistance; as in the case of Haemophilus influenzae type b . A similar approach could be appropriate for A. baumannii. Toward this end, several potentially protective antigens against A. baumannii were identified and evaluated as vaccine antigen candidates. A licensed vaccine for the bacteria, however, is still not in sight. Here we explore and discuss challenges in vaccine development against A. baumannii and the promising approaches for improving the vaccine development process.
Collapse
Affiliation(s)
- NorAziyah Mat Rahim
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.,Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Virology Unit, Institute for Medical Research, National Institute of Health Complex, Setia Alam, Malaysia
| | - HaiYen Lee
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Phylogenomic Characterization of a Novel Corynebacterium Species Associated with Fatal Diphtheritic Stomatitis in Endangered Yellow-Eyed Penguins. mSystems 2021; 6:e0032021. [PMID: 34100641 PMCID: PMC8269222 DOI: 10.1128/msystems.00320-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yellow-eyed penguins, Megadyptes antipodes, are an endangered species that are endemic to New Zealand. Outbreaks of diphtheritic stomatitis have caused significant mortality for this species, especially among young chicks. In this study, we isolated 16 Corynebacterium sp. isolates from the oral cavities of 2- to 14-day-old chicks at a range of infection stages and sequenced the genomes to understand their virulence mechanisms. Phylogenomic and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) characterization indicate that these strains belong to a novel Corynebacterium species. A simple multiplex PCR-based diagnostic assay has been developed to identify these strains rapidly and reliably. Similar to other corynebacteria, genomic islands and prophages introduced significant diversity among these strains that has potentially led to minor functional variations between the two lineages. Despite the presence of multiple corynebacterial virulence genes and a spaDEF-type pilus gene cluster among these strains, the survival rate was much higher in Galleria mellonella larvae than in those inoculated with Corynebacterium ulcerans NZRM 818 and Corynebacterium pseudotuberculosis NZRM 3004. Therefore, these strains are opportunistic pathogens causing high mortality among young penguin chicks due to a less-developed immune system. IMPORTANCE Yellow-eyed penguins, Megadyptes antipodes, are endangered species with a sharp decline in the numbers of breeding pairs over the last 2 decades. Diphtheritic stomatitis, characterized by a thick fibrinopurulent exudate in the oral cavities and symptoms, including inanition and significant weight loss, is responsible for significant mortality among the young chicks. These chicks are treated with antibiotics, amoxicillin-clavulanic acid or enrofloxacin, but do not always recover from the infection. The pathogen causing these infections and the mechanism of pathogenesis are unclear. This study has identified a novel Corynebacterium species to be associated with diphtheritic stomatitis in yellow-eyed penguins with potential virulence genes that are likely involved in pathogenesis. Importantly, a gene encoding an exotoxin, phospholipase D, is present among these strains. The inactivated form of this enzyme could potentially be used as an effective vaccine to protect these penguins from infection.
Collapse
|
12
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
13
|
Liu B, Li S, Li HT, Wang X, Tan HY, Liu S, Pan PH, Li XG, Li XM. Outcomes and prognostic factors of tigecycline treatment for hospital-acquired pneumonia involving multidrug-resistant Acinetobacter baumannii. J Int Med Res 2021; 48:300060520910917. [PMID: 32339001 PMCID: PMC7218464 DOI: 10.1177/0300060520910917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: To compare outcomes and prognostic factors of tigecycline (TC)-based treatment with those of other antibiotic-based treatments in the treatment of hospital-acquired pneumonia caused by multidrug-resistant Acinetobacter baumannii (MDRAB). Methods: A retrospective analysis of data was performed from all patients ≥18 years who were treated in the ICU at Xiangya Hospital, Changsha, China (January 2016 to June 2017) with hospital-acquired pneumonia involving monomicrobial MDRAB. Patients were separated into TC and non-TC groups. Results: Of 86 MDRAB-positive patients, 59 were in the TC group and 27 were in the non-TC group. The 28-day death rates were not significantly different between the two groups, but the TC group had significantly more patients with a good clinical prognosis than the non-TC group. Although prognostic markers for a poor clinical response were sepsis, procalcitonin concentration and APACHE II scores, TC therapy was found to be a protective factor. Conclusions: TC based therapy was associated with a positive clinical response in the treatment of MDRAB caused hospital-acquired pneumonia. Further studies are required to confirm our results.
Collapse
Affiliation(s)
- Ben Liu
- Emergency Department, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Li
- Radiology Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hai-Tao Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaokai Wang
- Emergency Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Tan
- Department of Respiratory Medicine, Changsha Central Hospital, University of South China, Changsha, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pin-Hua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Gang Li
- Emergency Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Min Li
- Emergency Department, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Ma C, Chen W. Where are we and how far is there to go in the development of an Acinetobacter vaccine? Expert Rev Vaccines 2021; 20:281-295. [PMID: 33554671 DOI: 10.1080/14760584.2021.1887735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Healthcare-associated infections caused by multidrug-resistant Acinetobacter baumannii are becoming alarming worldwide. However, the pipeline of new antibiotics is very limited. Vaccination is one of the most cost effective and promising strategies to prevent infections and can play an important role in combat multidrug resistance A. baumannii and prevent the development of new drug resistance. AREA COVERED This review gives an overview of the research and development of A. baumannii vaccines during the past five years (2015-2020), discusses the key progresses and current challenges of the field, and speculates on the future of A. baumannii vaccine development. EXPERT OPINION Moderate progresses have been made in the research and development of A. baumannii vaccine in the last five years, in particular in the areas of identification of new protein targets, development of multicomponent vaccines, and use of vaccines and antibodies as adjuncts for antibiotics therapies. However, substantial scientific and logistic challenges, such as selection of lead vaccine candidates and formulation, vaccine clinical trials and targeted population, and financial incentives, remain. Thus, innovative strategies will be needed before an A. baumannii vaccine candidate can be brought into late stage of preclinical development in next five years.
Collapse
Affiliation(s)
- Crystal Ma
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Ontario Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Ontario Canada.,Department of Biology, Brock University, St. Catharines, Ontario Canada
| |
Collapse
|
15
|
Recent Advances in the Pursuit of an Effective Acinetobacter baumannii Vaccine. Pathogens 2020; 9:pathogens9121066. [PMID: 33352688 PMCID: PMC7766458 DOI: 10.3390/pathogens9121066] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii has been a major cause of nosocomial infections for decades. The absence of an available vaccine coupled with emerging multidrug resistance has prevented the medical community from effectively controlling this human pathogen. Furthermore, the ongoing pandemic caused by SARS-CoV-2 has increased the risk of hospitalized patients developing ventilator-associated pneumonia caused by bacterial opportunists including A. baumannii. The shortage of antibiotics in the development pipeline prompted the World Health Organization to designate A. baumannii a top priority for the development of new medical countermeasures, such as a vaccine. There are a number of important considerations associated with the development of an A. baumannii vaccine, including strain characteristics, diverse disease manifestations, and target population. In the past decade, research efforts have revealed a number of promising new immunization strategies that could culminate in a safe and protective vaccine against A. baumannii. In this review, we highlight the recent progress in the development of A. baumannii vaccines, discuss potential challenges, and propose future directions to achieve an effective intervention against this human pathogen.
Collapse
|
16
|
Fereshteh S, Abdoli S, Shahcheraghi F, Ajdary S, Nazari M, Badmasti F. New putative vaccine candidates against Acinetobacter baumannii using the reverse vaccinology method. Microb Pathog 2020; 143:104114. [DOI: 10.1016/j.micpath.2020.104114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 01/15/2023]
|
17
|
Aghajani Z, Rasooli I, Mousavi Gargari SL. Exploitation of two siderophore receptors, BauA and BfnH, for protection against Acinetobacter baumannii infection. APMIS 2019; 127:753-763. [PMID: 31512768 DOI: 10.1111/apm.12992] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023]
Abstract
Iron uptake system is expressed in early stages of Acinetobacter baumannii infections under iron-restricted conditions. This study is aimed at the evaluation of immuno-protectivity of BfnH in comparison with BauA in both mature and selected fragmental proteins. The study was designed in single and combined forms of antigens. BfnH is presented in 3472 strains of A. baumannii with more than 97% identity. The preliminary immune-informatics analysis of this protein indicated a region from the β-barrel domain including exposed loops 2-5, with antigenic score comparable to that of BfnH. There was a significant rise in the specific IgG response in all test groups. The bacterial challenge with a lethal dose of A. baumannii demonstrated partial protection of whole proteins which coincides with a significant reduction in the bacterial population colonized in the main organs and an increase in the survival level. Passive immunization of the mice brought about 50% survival in the mice groups immunized with BfnH and with a combination of BfnH and BauA. The protectivity of siderophore receptors suggests their potential immunogenic role that could be considered as a component of multivalent subunit vaccine candidates against A. baumannii.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.,Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
18
|
Bolourchi N, Shahcheraghi F, Shirazi AS, Janani A, Bahrami F, Badmasti F. Immunogenic reactivity of recombinant PKF and AbOmpA proteins as serum resistance factors against sepsis of Acinetobacter baumannii. Microb Pathog 2019; 131:9-14. [DOI: 10.1016/j.micpath.2019.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023]
|
19
|
Hu C, Jiang J, Li Z, Li Y. Expression pattern of soluble triggering receptor expressed on myeloid cells-1 in mice with Acinetobacter baumannii colonization and infection in the lung. J Thorac Dis 2018; 10:1614-1621. [PMID: 29707313 DOI: 10.21037/jtd.2018.03.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Acinetobacter baumannii (A. baumannii) is one of the most troublesome opportunistic pathogens associated with hospital-acquired pneumonia (HAP). It is important to be able to discriminate A. baumannii colonization from infection in its early stages so that effective antibiotics can be promptly applied. Recent studies have reported that the secretion of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is markedly upregulated in pneumonia and sepsis, but the expression pattern of sTREM-1 in A. baumannii colonization and infection in the lung has not been explored. Methods C57BL/6J male mice were intraperitoneally injected with 1% streptozotocin for 5 consecutive days to establish diabetic models. Subsequently, aerosol inhalation of A. baumannii suspension was performed in these mice to induce pulmonary colonization or infection with saline as vehicle control. Mice were sacrificed and lung tissue was harvested on days 0, 1, 3, 5 and 7 after exposure. Pharyngeal swab culture, lung homogenate culture, and H&E staining of lung tissue were performed to assess the severity of infectious inflammation. sTREM-1 expressions in serum and lung supernatants, serum procalcitonin (PCT) and C-reactive protein (CRP) concentrations were measured by ELISA. Results A. baumannii colonization and infection models were verified by pharyngeal swab culture, lung homogenate culture, and H&E staining. While sTREM-1 concentrations in mice with A. baumannii colonization remained unchanged in serum and lung supernatants, sTREM-1 expression levels in infected animals were significantly upregulated. In addition, serum sTREM-1 concentration was positively correlated with serum levels of PCT and CRP. Conclusions Dynamic secretion of sTREM-1 is associated with the development of A. baumannii infection in the lung. Therefore, sTREM-1 expression level may be a promising biomarker for discriminating A. baumannii infection from colonization.
Collapse
Affiliation(s)
- Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Jiang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhen Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanyuan Li
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|