1
|
Duan B, Feng Q, Li L, Huang J. CircDDX21 alleviates trophoblast dysfunction and Treg differentiation in recurrent spontaneous abortion via miR-520a-5p/ FOXP3/PD-L1 axis. J Assist Reprod Genet 2024; 41:3539-3557. [PMID: 39400646 PMCID: PMC11706825 DOI: 10.1007/s10815-024-03281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a common complication during pregnancy, which is a burden to patients both physically and mentally. Circular RNAs (circRNAs) play important roles in RSA. However, the roles of circDDX21 in RSA development remain unknown. METHODS Decidual samples were harvested from healthy pregnant women and RSA patients. In HTR-8/SVneo and Bewo trophoblast cells, proliferation and migration were analyzed by cell counting kit-8 (CCK-8)/5-ethynyl-2'-deoxyuridine (EdU) staining and transwell/wound healing assays, respectively. CD4+ T cells from peripheral blood mononuclear cells of patients were incubated with trophoblast-conditioned medium. Regulatory T cells (Treg) proliferation was detected by carboxyfluorescein succinimidyl ester (CFSE) assay. Treg proportion, Treg/T helper 17 cells (Th17) ratio, and cytokines were measured using flow cytometry. The association among genes was validated using dual-luciferase assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP). RESULTS CircDDX21 and Forkhead box P3 (FOXP3) decreased, while miR-520a-5p increased in the decidual tissues of RSA patients. CircDDX21 overexpression promoted trophoblast proliferation and migration, and facilitated CD4+ T cell differentiation into Treg. CircDDX21 targeted miR-520a-5p to elevate FOXP3. MiR-520a-5p overexpression reversed the promoted trophoblast cell function of circDDX21 overexpression in HTR-8/SVneo cells. FOXP3 overexpression reversed the repressed trophoblast cell function elicited by miR-520a-5p overexpression in HTR-8/SVneo cells. FOXP3 promoted Treg differentiation by transcriptionally upregulating programmed cell death ligand 1 (PD-L1). CONCLUSION CircDDX21 ameliorated trophoblast dysfunction and Treg differentiation in RSA via miR-520a-5p/FOXP3/PD-L1 axis.
Collapse
Affiliation(s)
- Biao Duan
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
- Reproductive Medicine Center, Chongqing University Three Gorges Hospital, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404000, China.
| | - Qing Feng
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Li Li
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Jiangfang Huang
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| |
Collapse
|
2
|
Foley HB, Eckel SP, Yang T, Vigil M, Chen X, Marsit C, Farzan SF, Bastain TM, Habre R, Breton CV. EV-miRNA associated with environmental air pollution exposures in the MADRES cohort. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae019. [PMID: 39529802 PMCID: PMC11552520 DOI: 10.1093/eep/dvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Air pollution is a hazardous contaminant, exposure to which has substantial consequences for health during critical periods, such as pregnancy. MicroRNA (miRNA) is an epigenetic mechanism that modulates transcriptome responses to the environment and has been found to change in reaction to air pollution exposure. The data are limited regarding extracellular-vesicle (EV) miRNA variation associated with air pollution exposure during pregnancy and in susceptible populations who may be disproportionately exposed. This study aimed to identify EV-miRNA expression associated with ambient, residential exposure to PM2.5, PM10, NO2, O3 and with traffic-related NOx in 461 participants of the MADRES cohort, a low income, predominantly Hispanic pregnancy cohort based in Los Angeles, CA. This study used residence-based modeled air pollution data as well as Nanostring panels for EVmiRNA extracted with Qiagen exoRNeasy kits to evaluate 483 miRNA in plasma in early and late pregnancy. Average air pollution exposures were considered separately for 1-day, 1-week, and 8-week windows before blood collection in both early and late pregnancy. This study identified 63 and 66 EV-miRNA significantly associated with PM2.5 and PM10, respectively, and 2 miRNA associated with traffic-related NOX (False Discovery Rate-adjusted P-value < .05). Of 103 unique EV-miRNA associated with PM, 92% were associated with lung conditions according to HMDD (Human miRNA Disease Database) evidence. In particular, EV-miRNA previously identified with air pollution exposure also associated with PM2.5 and PM10 in this study were: miR-126, miR-16-5p, miR-187-3p, miR200b-3p, miR486-3p, and miR-582-3p. There were no significant differences in average exposures in early vs late pregnancy. Significant EV-miRNAs were only identified in late pregnancy with an 8-week exposure window, suggesting a vulnerable timeframe of exposure, rather than an acute response. These results describe a wide array of EV-miRNA for which expression is affected by PM exposure and may be in part mediating the biological response to ambient air pollution, with potential for health implications in pregnant women and their children.
Collapse
Affiliation(s)
- Helen Bermudez Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Mario Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Spatial Sciences Institute, Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
3
|
Tiensuu H, Haapalainen AM, Tissarinen P, Pasanen A, Hallman M, Rämet M. MicroRNA expression profile in the basal plate of human placenta associates with spontaneous preterm birth. Placenta 2024; 155:60-69. [PMID: 39137705 DOI: 10.1016/j.placenta.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION MicroRNAs regulate post-transcriptional gene expression. Their expression has been linked to many pregnancy complications, including preterm birth. Placental microRNA levels differ between preterm and term pregnancies. Not much is known about the targets that are affected by these differences in microRNA expression. We investigated associations between microRNA expression levels in the basal plate of the placenta and their targets and the onset of preterm birth. METHODS MiRNAomes of spontaneous preterm (n = 6) and term (n = 6) placentas were characterized using RNA sequencing. MicroRNA target and enrichment analyses were performed to explore potential gene targets and pathways. Selected findings were validated using qPCR (n = 41). MicroRNA mimic transfection and luciferase reporter assays were performed to test if certain microRNAs regulate their predicted target, SLIT2, the expression of which has been shown to associate with preterm birth. RESULTS We identified 39 differentially expressed microRNAs from the preterm placentas compared to term. Many downregulated microRNAs were from the placenta-specific C14MC microRNA cluster. Target gene and pathway analyses showed that microRNAs that associate with preterm birth target transcription related factors and genes linked with protein binding and invasive pathways. Eight of the identified microRNAs putatively target SLIT2, including miR-766-3p and miR-489-3p. Luciferase reporter assay suggested that these microRNAs regulate SLIT2 expression. DISCUSSION MicroRNA expression changes are associated with spontaneous preterm birth. A group of microRNAs targeting the same gene or genes belonging to the same pathway can have a significant effect on the critical processes maintaining pregnancy and placental functions.
Collapse
Affiliation(s)
- Heli Tiensuu
- Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Aapistie 5A, 90220, Oulu, Finland.
| | - Antti M Haapalainen
- Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Aapistie 5A, 90220, Oulu, Finland
| | - Pinja Tissarinen
- Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Aapistie 5A, 90220, Oulu, Finland
| | - Anu Pasanen
- Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Aapistie 5A, 90220, Oulu, Finland
| | - Mikko Hallman
- Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Aapistie 5A, 90220, Oulu, Finland
| | - Mika Rämet
- Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu, Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Aapistie 5A, 90220, Oulu, Finland; Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| |
Collapse
|
4
|
Ramzan F, Rong J, Roberts CT, O'Sullivan JM, Perry JK, Taylor R, McCowan L, Vickers MH. Maternal Plasma miRNAs as Early Biomarkers of Moderate-to-Late-Preterm Birth. Int J Mol Sci 2024; 25:9536. [PMID: 39273483 PMCID: PMC11394737 DOI: 10.3390/ijms25179536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Globally, preterm birth (PTB) is a primary cause of mortality and morbidity in infants, with PTB rates increasing worldwide over the last two decades. Biomarkers for accurate early prediction of PTB before the clinical event do not currently exist. Given their roles in the development and progression of many disease states, there has been increasing interest in the utility of microRNAs (miRNAs) as early biomarkers for pregnancy-related disorders, including PTB. The present study was designed to examine potential differences in miRNA abundances in maternal plasma from mothers with infants born following a moderate to late (28-36 weeks' gestation, n = 54) spontaneous PTB (SPTB) compared to mothers with matched term infants (n = 54). Maternal plasma collected at 15 weeks' gestation were utilised from the Auckland and Adelaide cohorts from the Screening for Pregnancy Endpoints (SCOPE) study. miRNAs in plasma were quantified using the NanoString nCounter expression panel (800 miRNAs). The top four most abundant miRNAs were significantly decreased in the plasma of mothers in the SPTB group with results consistent across both cohorts and pathway analysis was undertaken to examine the biological processes linked to the dysregulated miRNAs. The top candidate miRNAs (miRs-451a, -223-3p, let-7a-5p, and -126-3p) were linked to gene pathways associated with inflammation, apoptosis, and mitochondrial biogenesis. Moreover, miRNAs were consistently less abundant in the plasma of mothers of preterm infants across both sites, suggesting potential global dysregulation in miRNA biogenesis. This was supported by a significant downregulation in expression of key genes that are involved in miRNA biogenesis (DROSHA, DICER, and AGO2) across both sites in the SPTB group. In summary, the present study has identified miRNAs in maternal plasma that may provide predictive utility as early biomarkers for the risk of later SPTB. Importantly, these observations were conserved across two independent cohorts. Further, our data provide evidence for a persistent decrease in miRNA abundance in mothers who later experienced an SPTB, which is likely to have widespread consequences for gene regulation and epigenetic processes.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Claire T Roberts
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5001, Australia
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Rennae Taylor
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand
| | - Lesley McCowan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Huang D, Ran Y, Chen R, He J, Yin N, Qi H. Identification of circRNA Expression Profile and Potential Systemic Immune Imbalance Modulation in Premature Rupture of Membranes. Anal Cell Pathol (Amst) 2024; 2024:6724914. [PMID: 38803428 PMCID: PMC11129912 DOI: 10.1155/2024/6724914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Premature rupture of membrane (PROM) refers to the rupture of membranes before the onset of labor which increases the risk of perinatal morbidity and mortality. Recently, circular RNAs (circRNAs) have emerged as promising regulators of diverse diseases. However, the circRNA expression profiles and potential circRNA-miRNA-mRNA regulatory mechanisms in PROM remain enigmatic. In this study, we displayed the expression profiles of circRNAs and mRNAs in plasma and fetal membranes of PROM and normal control (NC) groups based on circRNA microarray, the Gene Expression Omnibus database, and NCBI's Sequence Read Archive. A total of 1,459 differentially expressed circRNAs (DECs) in PROM were identified, with 406 upregulated and 1,053 downregulated. Then, we constructed the circRNA-miRNA-mRNA network in PROM, encompassing 22 circRNA-miRNA pairs and 128 miRNA-mRNA pairs. Based on the analysis of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene set enrichment analysis (GSEA), DECs were implicated in immune-related pathways, with certain alterations persisting even postpartum. Notably, 11 host genes shared by DECs of fetal membrane tissue and prenatal plasma in PROM were significantly implicated in inflammatory processes and extracellular matrix regulation. Our results suggest that structurally stable circRNAs may predispose to PROM by mediating systemic immune imbalances, including peripheral leukocyte disorganization, local immune imbalance at the maternal-fetal interface, and local collagen disruption. This is the first time to decipher a landscape on circRNAs of PROM, reveals the pathogenic cause of PROM from the perspective of circRNA, and opens up a new direction for the diagnosis and treatment of PROM.
Collapse
Affiliation(s)
- Dongni Huang
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jie He
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
7
|
Ren J, Jin H, Zhu Y. The Role of Placental Non-Coding RNAs in Adverse Pregnancy Outcomes. Int J Mol Sci 2023; 24:ijms24055030. [PMID: 36902459 PMCID: PMC10003511 DOI: 10.3390/ijms24055030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genome and do not encode proteins. In recent years, ncRNAs have attracted increasing attention as critical participants in gene regulation and disease pathogenesis. Different categories of ncRNAs, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the progression of pregnancy, while abnormal expression of placental ncRNAs impacts the onset and development of adverse pregnancy outcomes (APOs). Therefore, we reviewed the current status of research on placental ncRNAs and APOs to further understand the regulatory mechanisms of placental ncRNAs, which provides a new perspective for treating and preventing related diseases.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|
8
|
Dauengauer-Kirlienė S, Domarkienė I, Pilypienė I, Žukauskaitė G, Kučinskas V, Matulevičienė A. Causes of preterm birth: Genetic factors in preterm birth and preterm infant phenotypes. J Obstet Gynaecol Res 2023; 49:781-793. [PMID: 36519629 DOI: 10.1111/jog.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
AIM The aim is to provide an overview of recent research on genetic factors that influence preterm birth in the context of neonatal phenotypic assessment. METHODS This is a nonsystematic review of the recent scientific literature. RESULTS Maternal and fetal genetic diversity and rare genome variants are linked with crucial immune response sites. In addition, more frequent in preterm neonates, de novo variants may lead to attention deficits, hyperactivity, autism spectrum disorders, and infertility of both sexes later in life. Environmental factors may also greatly burden fetal, and consequently, neonatal development and neurodevelopment through a failure in the fetal epigenome reprogramming process and even influence the initiation of spontaneous preterm pregnancy termination. Minimally invasive analysis of the transcription factors associated with preterm birth helps elucidate labor mechanisms and predict its timing. We also provide valuable summaries of genomic and transcriptomic factors that contribute to preterm birth. CONCLUSIONS Investigation of the human genome, epigenome, and transcriptome helps to identify molecular mechanisms linked with preterm delivery and premature newborn clinical appearance in early and late neonatal life and even predict developmental outcomes. Further studies are needed to fully understand the implications of genetic changes in preterm births. These data could be used to develop targeted interventions aimed at selecting the most effective individual treatment and rehabilitation plan.
Collapse
Affiliation(s)
- Svetlana Dauengauer-Kirlienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Domarkienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Pilypienė
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gabrielė Žukauskaitė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Illarionov RA, Pachuliia OV, Vashukova ES, Tkachenko AA, Maltseva AR, Postnikova TB, Nasykhova YA, Bespalova ON, Glotov AS. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes (Basel) 2022; 13:genes13112018. [PMID: 36360255 PMCID: PMC9690526 DOI: 10.3390/genes13112018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years evidence has been accumulated showing that miRNAs can act as potential biomarkers or targets for therapy of preterm birth, one of the most important problems in modern obstetrics. We have performed a prospective study of the miRNA profile in the plasma during the first and second trimesters in pregnant women with high risk of preterm birth (n = 13 cases and n = 11 controls). For the study group plasma blood samples at 9–13 weeks before diagnosis and at 22–24 weeks after start of therapy were selected. Using high-throughput sequencing technology we detected differences in the levels of 15 miRNAs (3 upregulated—hsa-miR-122-5p, hsa-miR-34a-5p, hsa-miR-34c-5p; 12 downregulated—hsa-miR-487b-3p, hsa-miR-493-3p, hsa-miR-432-5p, hsa-miR-323b-3p, hsa-miR-369-3p, hsa-miR-134-5p, hsa-miR-431-5p, hsa-miR-485-5p, hsa-miR-382-5p, hsa-miR-369-5p, hsa-miR-485-3p, hsa-miR-127-3p) (log2(FC) ≥ 1.5; FDR ≤ 0.05) during the first trimester compared with the control (non-high-risk of preterm birth pregnant women). All downregulated miRNAs in the first trimester from the placenta-specific C14MC cluster. During the second trimester no differentially expressed miRNAs were found. Our results suggest that the miRNA profile in plasma during early pregnancy may predict a high risk of preterm birth, which is important in preventing gestational problems as early as possible.
Collapse
Affiliation(s)
- Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Resource Center “Biobank”, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Alexander A. Tkachenko
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Institute of Applied Computer Sciences, ITMO University, St. Petersburg 197101, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatyana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olesya N. Bespalova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
10
|
Spiliopoulos M, Haddad A, Al-Kouatly HB, Haleema S, Paidas MJ, Iqbal SN, Glazer RI. MicroRNA analysis in maternal blood of pregnancies with preterm premature rupture of membranes reveals a distinct expression profile. PLoS One 2022; 17:e0277098. [PMID: 36327243 PMCID: PMC9632843 DOI: 10.1371/journal.pone.0277098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To determine the expression profile of microRNAs in the peripheral blood of pregnant women with preterm premature rupture of membranes (PPROM) compared to that of healthy pregnant women. STUDY DESIGN This was a pilot study with case-control design in pregnant patients enrolled between January 2017 and June 2019. Patients with healthy pregnancies and those affected by PPROM between 20- and 33+6 weeks of gestation were matched by gestational age and selected for inclusion to the study. Patients were excluded for multiple gestation and presence of a major obstetrical complication such as preeclampsia, diabetes, fetal growth restriction and stillbirth. A total of ten (n = 10) controls and ten (n = 10) patients with PPROM were enrolled in the study. Specimens were obtained before administration of betamethasone or intravenous antibiotics. MicroRNA expression was analyzed for 800 microRNAs in each sample using the NanoString nCounter Expression Assay. Differential expression was calculated after normalization and log2- transformation using the false discovery rate (FDR) method at an alpha level of 5%. RESULTS Demographic characteristics were similar between the two groups. Of the 800 miRNAs analyzed, 116 were differentially expressed after normalization. However, only four reached FDR-adjusted statistical significance. Pregnancies affected by PPROM were characterized by upregulation of miR-199a-5p, miR-130a-3p and miR-26a-5p and downregulation of miR-513b-5p (FDR adjusted p-values <0.05). The differentially expressed microRNAs participate in pathways associated with altered collagen and matrix metalloprotease expression in the extracellular matrix. CONCLUSION Patients with PPROM have a distinct peripheral blood microRNA profile compared to healthy pregnancies as measured by the NanoString Expression Assay.
Collapse
Affiliation(s)
- Michail Spiliopoulos
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal Fetal Medicine and Genetics, University of Miami, Miami, Florida, United States of America
| | - Andrew Haddad
- Department of Obstetrics, Gynecology & Women’s Health, Division of Maternal Fetal Medicine & Surgery, Hackensack Meridian School of Medicine, Hackensack University Medical Center, Hackensack, New Jersey, United States of America
| | - Huda B. Al-Kouatly
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Saeed Haleema
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal Fetal Medicine, MedStar Washington Hospital Center, Washington, DC, United States of America
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal Fetal Medicine and Genetics, University of Miami, Miami, Florida, United States of America
| | - Sara N. Iqbal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal Fetal Medicine, MedStar Washington Hospital Center, Washington, DC, United States of America
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
11
|
Akram KM, Kulkarni NS, Brook A, Wyles MD, Anumba DOC. Transcriptomic analysis of the human placenta reveals trophoblast dysfunction and augmented Wnt signalling associated with spontaneous preterm birth. Front Cell Dev Biol 2022; 10:987740. [DOI: 10.3389/fcell.2022.987740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of death in under-five children. Worldwide, annually, over 15 million babies are born preterm and 1 million of them die. The triggers and mechanisms of spontaneous PTB remain largely unknown. Most current therapies are ineffective and there is a paucity of reliable predictive biomarkers. Understanding the molecular mechanisms of spontaneous PTB is crucial for developing better diagnostics and therapeutics. To address this need, we conducted RNA-seq transcriptomic analysis, qRT-PCR and ELISA on fresh placental villous tissue from 20 spontaneous preterm and 20 spontaneous term deliveries, to identify genes and signalling pathways involved in the pathogenesis of PTB. Our differential gene expression, gene ontology and pathway analysis revealed several dysregulated genes (including OCLN, OPTN, KRT7, WNT7A, RSPO4, BAMBI, NFATC4, SLC6A13, SLC6A17, SLC26A8 and KLF8) associated with altered trophoblast functions. We identified dysregulated Wnt, oxytocin and cellular senescence signalling pathways in preterm placentas, where augmented Wnt signalling could play a pivotal role in the pathogenesis of PTB due to its diverse biological functions. We also reported two novel targets (ITPR2 and MYLK2) in the oxytocin signalling pathways for further study. Through bioinformatics analysis on DEGs, we identified four key miRNAs, - miR-524-5p, miR-520d-5p, miR-15a-5p and miR-424-5p - which were significantly downregulated in preterm placentas. These miRNAs may have regulatory roles in the aberrant gene expressions that we have observed in preterm placentas. We provide fresh molecular insight into the pathogenesis of spontaneous PTB which may drive further studies to develop new predictive biomarkers and therapeutics.
Collapse
|
12
|
Östling H, Lodefalk M, Backman H, Kruse R. Global microRNA and protein expression in human term placenta. Front Med (Lausanne) 2022; 9:952827. [PMID: 36330066 PMCID: PMC9622934 DOI: 10.3389/fmed.2022.952827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Description of the global expression of microRNAs (miRNAs) and proteins in healthy human term placentas may increase our knowledge of molecular biological pathways that are important for normal fetal growth and development in term pregnancy. The aim of this study was to explore the global expression of miRNAs and proteins, and to point out functions of importance in healthy term placentas. Materials and methods Placental samples (n = 19) were identified in a local biobank. All samples were from uncomplicated term pregnancies with vaginal births and healthy, normal weight newborns. Next-generation sequencing and nano-scale liquid chromatographic tandem mass spectrometry were used to analyse miRNA and protein expression, respectively. Results A total of 895 mature miRNAs and 6,523 proteins were detected in the placentas, of which 123 miRNAs and 346 proteins were highly abundant. The miRNAs were in high degree mapped to chromosomes 19, 14, and X. Analysis of the highly abundant miRNAs and proteins showed several significantly predicted functions in common, including immune and inflammatory response, lipid metabolism and development of the nervous system. Discussion The predicted function inflammatory response may reflect normal vaginal delivery, while lipid metabolism and neurodevelopment may be important processes for the term fetus. The data presented in this study, with complete miRNA and protein findings, will enhance the knowledge base for future research in the field of placental function and pathology.
Collapse
Affiliation(s)
- Hanna Östling
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- *Correspondence: Hanna Östling,
| | - Maria Lodefalk
- Department of Paediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helena Backman
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Wang X, Miao S, Lu L, Yuan J, Pan S, Wu X. miR‑519d‑3p released by human blastocysts negatively regulates endometrial epithelial cell adhesion by targeting HIF1α. Int J Mol Med 2022; 50:123. [PMID: 35959792 PMCID: PMC9387561 DOI: 10.3892/ijmm.2022.5179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022] Open
Abstract
Successful embryo implantation requires a competent embryo, a receptive endometrium and synchronized communication between them. The selection of embryos with the highest implantation potential remains a challenge in the field of assisted reproductive technology. Moreover, little is known about the precise molecular mechanisms underlying embryo‑endometrium crosstalk. MicroRNAs (miRNAs/miRs) have been detected in the spent embryo culture medium (SCM); however, their functions at the preimplantation stage remain unclear. In the present study, human SCM samples were collected during in vitro fertilization/intracytoplasmic sperm injection‑embryo transfer and divided into implanted and not‑implanted groups according to the clinical pregnancy outcomes. Total RNA was extracted and six miRNAs (miR‑372‑3p, miR‑373‑3p, miR‑516b‑5p, miR‑517a‑3p, miR‑519d‑3p and miR‑520a‑3p) were selected for reverse transcription‑quantitative PCR (RT‑qPCR) analysis. The results revealed that miR‑372‑3p and miR‑519d‑3p were markedly increased in SCM from blastocysts that failed to implant compared with in blastocysts that implanted. The receiver operating characteristic curve analysis revealed that miR‑519d‑3p was superior to miR‑372‑3p in predicting pregnancy outcomes. In vitro miRNA uptake and cell adhesion assays were performed to determine whether miR‑519d‑3p could be taken up by endometrial epithelial cells and to examine the biological roles of miR‑519d‑3p after internalization. Potential targets of miR‑519d‑3p were verified using a dual‑luciferase reporter system. The results demonstrated that miR‑519d‑3p was taken up by human endometrial epithelial cells and that it may inhibit embryo adhesion by targeting HIF1α. Using RT‑qPCR, western blot analysis and flow cytometry assay, HIF1α was shown to inhibit the biosynthesis of fucosyltransferase 7 and sialyl‑Lewis X (sLex), a cell‑surface oligosaccharide that serves an important role in embryonic apposition and adhesion. In addition, a mouse model was established and the results suggested that miR‑519d‑3p overexpression hampered embryo implantation in vivo. Taken together, miRNAs in SCM may serve as novel biomarkers for embryo quality. Furthermore, miR‑519d‑3p was shown to mediate embryo‑endometrium crosstalk and to negatively regulate embryo implantation by targeting HIF1α/FUT7/sLex pathway.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Suibing Miao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Linqi Lu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jingchuan Yuan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuhong Pan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
14
|
Maligianni I, Yapijakis C, Nousia K, Bacopoulou F, Chrousos G. Exosomes and exosomal non‑coding RNAs throughout human gestation (Review). Exp Ther Med 2022; 24:582. [PMID: 35949320 PMCID: PMC9353550 DOI: 10.3892/etm.2022.11518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, research on exosomes and their content has been intensive, which has revealed their important role in cell-to-cell communication, and has implicated exosomal biomolecules in a broad spectrum of physiological processes, as well as in the pathogenesis of various diseases. Pregnancy and its normal progression rely highly on the efficient communication between the mother and the fetus, mainly mediated by the placenta. Recent studies have established the placenta as an important source of circulating exosomes and have demonstrated that exosome release into the maternal circulation gradually increases during pregnancy, starting from six weeks of gestation. This orchestrates maternal-fetal crosstalk, including maternal immune tolerance and pregnancy-associated metabolic adaptations. Furthermore, an increased number of secreted exosomes, along with altered patterns of exosomal non-coding RNAs (ncRNAs), especially microRNAs and long non-coding RNAs (lncRNAs), have been observed in a number of pregnancy complications, such as gestational diabetes mellitus and preeclampsia. The early detection of exosomes and specific exosomal ncRNAs in various biological fluids during pregnancy highlights them as promising candidate biomarkers for the diagnosis, prognosis and treatment of numerous pregnancy disorders in adolescents and adults. The present review aimed to provide insight into the current knowledge regarding the potential, only partially elucidated, role of exosomes and exosomal cargo in the regulation and progression of normal pregnancy, as well as their potential dysregulation and contribution to pathological pregnancy situations.
Collapse
Affiliation(s)
- Ioanna Maligianni
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Yapijakis
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantina Nousia
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
16
|
miR-520a-5p regulates Frizzled 9 expression and mediates effects of cigarette smoke and iloprost chemoprevention. Sci Rep 2022; 12:2388. [PMID: 35149732 PMCID: PMC8837775 DOI: 10.1038/s41598-022-06292-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Expression of Frizzled 9 (FZD9) is critical to the activity of the lung cancer chemoprevention agent and prostacyclin analogue, iloprost. FZD9 is required in lung epithelial cells for iloprost to activate peroxisome proliferator activated receptor gamma (PPARG) and related anti-tumor signaling. We aimed to investigate which miRNA regulate FZD9 in the context of cigarette smoke exposure and iloprost treatment. We found that miR-520a-5p binds the FZD9 3’UTR in lung cell lines and alters activity and expression of FZD9 downstream targets. Cigarette smoke condensate (CSC) increases expression of miR-520a-5p, while iloprost decreases expression. Cancer promoting effects of a miR-520a-5p mimic were rescued with iloprost treatment, and effects of cigarette smoke were partially rescued with a miR-520a-5p inhibitor. Here we confirm miR-520a-5p as a regulator of FZD9 activity and a mediator of CSC and iloprost effects in the lung. Targeting miR-520a-5p could be an approach to restoring FZD9 expression and improving response to iloprost lung cancer chemoprevention.
Collapse
|
17
|
Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc 2021; 97:851-873. [PMID: 34939297 DOI: 10.1111/brv.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Preterm birth occurs worldwide and is associated with high morbidity, mortality, and economic cost. Although several risk factors associated with parturition and preterm birth have been identified, mechanisms underlying this syndrome remain unclear, thereby limiting the implementation of interventions for prevention and management. Known triggers of preterm birth include conditions related to inflammatory and immunological pathways, as well as genetics and maternal history. Importantly, epigenetics, which is the study of heritable phenotypic changes that occur without alterations in the DNA sequence, may play a role in linking social and environmental risk factors for preterm birth. Epigenetic approaches to the study of preterm birth, including analyses of the effects of microRNAs, long non-coding RNAs, DNA methylation, and histone modification, have contributed to an improved understanding of the molecular bases of both term and preterm birth. Additionally, epigenetic modifications have been linked to factors already associated with preterm birth, including obesity and smoking. The prevention and management of preterm birth remains a challenge worldwide. Although epigenetic analysis provides valuable insights into the causes and risk factors associated with this syndrome, further studies are necessary to determine whether epigenetic approaches can be used routinely for the diagnosis, prevention, and management of preterm birth.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
18
|
Baker BC, Lui S, Lorne I, Heazell AEP, Forbes K, Jones RL. Sexually dimorphic patterns in maternal circulating microRNAs in pregnancies complicated by fetal growth restriction. Biol Sex Differ 2021; 12:61. [PMID: 34789323 PMCID: PMC8597318 DOI: 10.1186/s13293-021-00405-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Current methods fail to accurately predict women at greatest risk of developing fetal growth restriction (FGR) or related adverse outcomes, including stillbirth. Sexual dimorphism in these adverse pregnancy outcomes is well documented as are sex-specific differences in gene and protein expression in the placenta. Circulating maternal serum microRNAs (miRNAs) offer potential as biomarkers that may also be informative of underlying pathology. We hypothesised that FGR would be associated with an altered miRNA profile and would differ depending on fetal sex. Methods miRNA expression profiles were assessed in maternal serum (> 36 weeks’ gestation) from women delivering a severely FGR infant (defined as an individualised birthweight centile (IBC) < 3rd) and matched control participants (AGA; IBC = 20–80th), using miRNA arrays. qPCR was performed using specific miRNA primers in an expanded cohort of patients with IBC < 5th (n = 15 males, n = 16 females/group). Maternal serum human placental lactogen (hPL) was used as a proxy to determine if serum miRNAs were related to placental dysfunction. In silico analyses were performed to predict the potential functions of altered miRNAs. Results Initial analyses revealed 11 miRNAs were altered in maternal serum from FGR pregnancies. In silico analyses revealed all 11 altered miRNAs were located in a network of genes that regulate placental function. Subsequent analysis demonstrated four miRNAs showed sexually dimorphic patterns. miR-28-5p was reduced in FGR pregnancies (p < 0.01) only when there was a female offspring and miR-301a-3p was only reduced in FGR pregnancies with a male fetus (p < 0.05). miR-454-3p was decreased in FGR pregnancies (p < 0.05) regardless of fetal sex but was only positively correlated to hPL when the fetus was female. Conversely, miR-29c-3p was correlated to maternal hPL only when the fetus was male. Target genes for sexually dimorphic miRNAs reveal potential functional roles in the placenta including angiogenesis, placental growth, nutrient transport and apoptosis. Conclusions These studies have identified sexually dimorphic patterns for miRNAs in maternal serum in FGR. These miRNAs may have potential as non-invasive biomarkers for FGR and associated placental dysfunction. Further studies to determine if these miRNAs have potential functional roles in the placenta may provide greater understanding of the pathogenesis of placental dysfunction and the differing susceptibility of male and female fetuses to adverse in utero conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00405-z. Detection and treatment of pregnancies at high risk of fetal growth restriction (FGR) and stillbirth remains a major obstetric challenge; circulating maternal serum microRNAs (miRNAs) offer potential as novel biomarkers. Unbiased analysis of serum miRNAs in women in late pregnancy identified a specific profile of circulating miRNAs in women with a growth-restricted infant. Some altered miRNAs (miR-28-5p, miR-301a-3p) showed sexually dimorphic expression in FGR pregnancies and others a fetal-sex dependent association to a hormonal marker of placental dysfunction (miR-454-3p, miR-29c-3p). miR-301a-3p and miR-28-5p could potentially be used to predict FGR specifically in pregnancies with a male or female baby, respectively, however larger cohort studies are required. Further investigations of these miRNAs and their relationship to placental dysfunction will lead to a better understanding of the pathophysiology of FGR and why there is differing susceptibility of male and female fetuses to FGR and stillbirth.
Collapse
Affiliation(s)
- Bernadette C Baker
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.
| | - Sylvia Lui
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,Division of Inflammation and Repair, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabel Lorne
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Alexander E P Heazell
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Rebecca L Jones
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J, Pisarska MD. High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 2021; 13:995-1012. [PMID: 34030457 PMCID: PMC8244582 DOI: 10.2217/epi-2021-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura E Eisman
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nikhil V Joshi
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E Flowers
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rae A Buttle
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Erica Sauro
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosemarie DiPentino
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica L Chan
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yayu Lin
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kent Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Institute for Translational Genomics & Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John Williams
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Khanabdali R, Zheng S, Melton PE, Georgiou HM, Moses E, Brennecke SP, Kalionis B. Late/post-term decidual basalis-derived mesenchymal stem/stromal cells show evidence of advanced ageing and downregulation of microRNA-516b-5p. Placenta 2021; 109:43-54. [PMID: 33975264 DOI: 10.1016/j.placenta.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The placenta is a short-lived organ, yet it shows signs of progressive ageing in the third trimester. Studies of ageing chorionic placental tissue have recently flourished, providing evidence of advanced ageing of tissues in the late/post-term (L/PT) period of gestation. However, ageing of the maternal aspect of the maternal-fetal interface, specifically the decidua basalis, is poorly understood. Here, we investigated whether the L/PT period was associated with advanced ageing and exhaustion of important decidua basalis mesenchymal stem/stromal cells (DMSCs) functions. METHODS In this study, DMSCs were isolated and characterised from early term (ET) and L/PT placental tissue and they were then investigated by employing various MSC potency and ageing assays. RNA sequencing was also performed to screen for specific microRNAs that are associated with stem cell exhaustion and ageing between ET- and L/PT-DMSCs. RESULTS L/PT-DMSCs, when compared to ET-DMSCs, showed significantly lower cell proliferation and a significant higher level of cell apoptosis. L/PT-DMSCs showed significantly lower resistance to oxidative stress and a significant decrease in antioxidant capacity compared with ET-DMSCs. Western blot analysis revealed increased expression of the stress-mediated P-p38MAPK protein in L/PT-DMSCs. RNA Sequencing showed microRNA (miR) miR-516b-5p, was present at significantly lower levels in L/PT-DMSCs. Inhibition of miR-516b-5p in ET-DMSCs revealed a decline in the ability of the inhibited cells to survive in extended cell culture. DISCUSSION These data provide the first evidence of advanced ageing and exhaustion of important stem cell functions in L/PT-DMSCs, and the involvement of specific miRs in the DMSC ageing process.
Collapse
Affiliation(s)
- Ramin Khanabdali
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia; University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Shixuan Zheng
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia; University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Phillip E Melton
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Harry M Georgiou
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia; University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Eric Moses
- The University of Tasmania, Menzies Institute for Medical Research. Tasmania, Australia
| | - Shaun P Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia; University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia; University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Gottlieb A, Flor I, Nimzyk R, Burchardt L, Helmke B, Langenbuch M, Spiekermann M, Feidicker S, Bullerdiek J. The expression of miRNA encoded by C19MC and miR-371-3 strongly varies among individual placentas but does not differ between spontaneous and induced abortions. PROTOPLASMA 2021; 258:209-218. [PMID: 33034783 PMCID: PMC7782366 DOI: 10.1007/s00709-020-01548-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
miRNAs of the largest human miRNA gene cluster at all, i.e., C19MC, are almost exclusively expressed in the placenta. Nevertheless, only little is known about the interindividual variation of their expression and even about possible influence of gestational age, conflicting data is reported as well as for miRNAs of the much smaller miR-371-3 cluster. Our present study aims at the analyses of the expression of miRNAs from both clusters at different times of pregnancy, possible differences between placenta samples obtained from spontaneous or induced abortions in the first trimester, and the possible variation of miRNA expression at different sites within same placentas. miR-371a-3p, miR-372-3p, miR-373-3p, miR-517a-3p, and miR-520c-3p were quantified in 85 samples and miR-371a-3p was quantified in maternal serum samples taken immediately before delivery. While for miRNA-517a-3p and miR-520c-3p the expression increased with increasing gestational age, the present study revealed strong interindividual differences in the expression of miR-371-3 in full-term placental tissue as well as for miRNAs of the C19MC cluster, where the levels differed to a much lesser extent than for the former microRNAs. Also, strong interindividual differences were noted between the serum samples but differences related to the site of the placenta where the sample has been taken from were excluded. For neither of the data from placental tissue, the study revealed differences between the spontaneous and induced abortion group. Thus, the differences do not in general seem to be related to first trimester abortion. It remains to be elucidated whether or not they affect other prenatal processes.
Collapse
Affiliation(s)
- Andrea Gottlieb
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Inga Flor
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Rolf Nimzyk
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Lars Burchardt
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Burkhard Helmke
- Institute for Pathology, Elbe Clinic Stade-Buxtehude, Bremervörder Strasse 111, 21682, Stade, Germany
| | - Marc Langenbuch
- Clinic of Gynecology and Obstetrics, Helios Clinic, Altenwalder Chaussee 10, 27474, Cuxhaven, Germany
| | - Meike Spiekermann
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Susanne Feidicker
- Department of Gynecology and Obstetrics, Evang. Diakonie-Hospital, Gröpelinger Heerstrasse 406-408, 28239, Bremen, Germany
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Jörn Bullerdiek
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany.
- Institute for Medical Genetics, University of Rostock, University Medicine, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| |
Collapse
|
22
|
Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells 2019; 8:cells8111459. [PMID: 31752198 PMCID: PMC6912400 DOI: 10.3390/cells8111459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
As the majority of cancers and gestational diseases are prognostically stage- and grade-dependent, the ultimate goal of ongoing studies in precision medicine is to provide early and timely diagnosis of such disorders. These studies have enabled the development of various new diagnostic biomarkers, such as free circulating nucleic acids, and detection of their epigenetic changes. Recently, extracellular vesicles including exosomes, microvesicles, oncosomes, and apoptotic bodies have been recognized as powerful diagnostic tools. Extracellular vesicles carry specific proteins, lipids, DNAs, mRNAs, and miRNAs of the cells that produced them, thus reflecting the function of these cells. It is believed that exosomes, in particular, may be the optimal biomarkers of pathological pregnancies and cancers, especially those that are frequently diagnosed at an advanced stage, such as ovarian cancer. In the present review, we survey and critically appraise novel epigenetic biomarkers related to free circulating nucleic acids and extracellular vesicles, focusing especially on their status in trophoblasts (pregnancy) and neoplastic cells (cancers).
Collapse
|
23
|
Konwar C, Manokhina I, Terry J, Inkster AM, Robinson WP. Altered levels of placental miR-338-3p and miR-518b are associated with acute chorioamnionitis and IL6 genotype. Placenta 2019; 82:42-45. [PMID: 31174625 DOI: 10.1016/j.placenta.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
Placental-derived miRNAs are attractive candidates as biomarkers of placental health, but their associations with specific pathologies, such as acute chorioamnionitis (aCA), are not well explored. Samples of chorionic villi from 57 placentas (33 aCA and 24 non-aCA) were analyzed. Expression was quantified for six candidate miRNAs (miR-146a, miR-210, miR-223, miR-338-3p, miR-411, and miR-518b), using quantitative real-time PCR. miR-518b and miR-338-3p were differentially expressed between aCA cases and non-aCA cases (Bonferroni-corrected p < 0.05). Further, we observed that placental miR-518b expression was associated with an IL6 SNP (rs1800796), a polymorphism we previously reported as a risk-conferring variant for aCA.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| | - Irina Manokhina
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| | - Jefferson Terry
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Pathology, BC Children's Hospital, BC V6H 3N1, Canada.
| | - Amy M Inkster
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
24
|
Tseng AM, Mahnke AH, Wells AB, Salem NA, Allan AM, Roberts VH, Newman N, Walter NA, Kroenke CD, Grant KA, Akison LK, Moritz KM, Chambers CD, Miranda RC. Maternal circulating miRNAs that predict infant FASD outcomes influence placental maturation. Life Sci Alliance 2019; 2:2/2/e201800252. [PMID: 30833415 PMCID: PMC6399548 DOI: 10.26508/lsa.201800252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal gestational circulating microRNAs, predictive of adverse infant outcomes, including growth deficits, following prenatal alcohol exposure, contribute to placental pathology by impairing the EMT pathway in trophoblasts. Prenatal alcohol exposure (PAE), like other pregnancy complications, can result in placental insufficiency and fetal growth restriction, although the linking causal mechanisms are unclear. We previously identified 11 gestationally elevated maternal circulating miRNAs (HEamiRNAs) that predicted infant growth deficits following PAE. Here, we investigated whether these HEamiRNAs contribute to the pathology of PAE, by inhibiting trophoblast epithelial–mesenchymal transition (EMT), a pathway critical for placental development. We now report for the first time that PAE inhibits expression of placental pro-EMT pathway members in both rodents and primates, and that HEamiRNAs collectively, but not individually, mediate placental EMT inhibition. HEamiRNAs collectively, but not individually, also inhibited cell proliferation and the EMT pathway in cultured trophoblasts, while inducing cell stress, and following trophoblast syncytialization, aberrant endocrine maturation. Moreover, a single intravascular administration of the pooled murine-expressed HEamiRNAs, to pregnant mice, decreased placental and fetal growth and inhibited the expression of pro-EMT transcripts in the placenta. Our data suggest that HEamiRNAs collectively interfere with placental development, contributing to the pathology of PAE, and perhaps also, to other causes of fetal growth restriction.
Collapse
Affiliation(s)
- Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alan B Wells
- Clinical and Translational Research Institute, University of California San Diego, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Victoria Hj Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Ar Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lisa K Akison
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Christina D Chambers
- Clinical and Translational Research Institute, University of California San Diego, San Diego, CA, USA .,Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | | |
Collapse
|
25
|
Qiu L, Pan M, Zhang R, Ren K. Maternal peripheral blood platelet-to-white blood cell ratio and platelet count as potential diagnostic markers of histological chorioamnionitis-related spontaneous preterm birth. J Clin Lab Anal 2019; 33:e22840. [PMID: 30714639 PMCID: PMC6528611 DOI: 10.1002/jcla.22840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/11/2022] Open
Abstract
Background Histological chorioamnionitis (HCA) is one of the leading causes of spontaneous preterm birth, thus, to identify novel biomarkers for the early diagnosis of HCA is in a great need. Objective To investigate the diagnostic value of maternal peripheral blood platelet‐to‐white blood cell ratio (PLT/WBC) and platelet (PLT) counts in HCA‐related preterm birth. Methods A total of 400 patients with preterm birth were enrolled in this study: non‐HCA group (n = 193) and HCA group (n = 207), and 87 full‐term pregnancies were enrolled as the control. The peripheral blood of the participators was collected, and the neutrophil count, WBC count, platelet count, and levels of C‐reactive protein (CRP) and procalcitonin were recorded, and the platelet‐to‐white blood cell ratio (PLT/WBC) of the participators was calculated. Receiver operating characteristic (ROC) curve has been drawn to show the sensitivity and specificity of PLT/WBC and PLT count for the diagnosis of HCA‐related spontaneous preterm birth patients. Results The neutrophil count, WBC count, and procalcitonin show no significant differences among the three groups, and the PLT count, PLT/WBC, and CRP (P < 0.05) were significantly increased in HCA group compared with non‐HCA group; moreover, the area under the curve (AUC) of PLT/WBC, PLT, and CRP was 0.744 (95% confidence interval [CI], 0.6966‐0.7922), 0.8095 (95% CI, 0.7676‐0.8514), and 0.5730 (95% CI, 0.5173‐0.6287), respectively. Conclusion Platelet count and PLT/WBC may become a potential biomarker of HCA‐related spontaneous preterm birth.
Collapse
Affiliation(s)
- Liyin Qiu
- Obstetrical Department, Fujian Provincial Maternity and Children's Hospital, affiliated Hospital of Fujian Medical University, Fujian, China
| | - Mian Pan
- Obstetrical Department, Fujian Provincial Maternity and Children's Hospital, affiliated Hospital of Fujian Medical University, Fujian, China
| | - Ronglian Zhang
- Obstetrical Department, Fujian Provincial Maternity and Children's Hospital, affiliated Hospital of Fujian Medical University, Fujian, China
| | - Kunhai Ren
- Obstetrical Department, Fujian Provincial Maternity and Children's Hospital, affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
26
|
Malnou EC, Umlauf D, Mouysset M, Cavaillé J. Imprinted MicroRNA Gene Clusters in the Evolution, Development, and Functions of Mammalian Placenta. Front Genet 2019; 9:706. [PMID: 30713549 PMCID: PMC6346411 DOI: 10.3389/fgene.2018.00706] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
In mammals, the expression of a subset of microRNA (miRNA) genes is governed by genomic imprinting, an epigenetic mechanism that confers monoallelic expression in a parent-of-origin manner. Three evolutionarily distinct genomic intervals contain the vast majority of imprinted miRNA genes: the rodent-specific, paternally expressed C2MC located in intron 10 of the Sfmbt2 gene, the primate-specific, paternally expressed C19MC positioned at human Chr.19q13.4 and the eutherian-specific, maternally expressed miRNAs embedded within the imprinted Dlk1-Dio3 domains at human 14q32 (also named C14MC in humans). Interestingly, these imprinted miRNA genes form large clusters composed of many related gene copies that are co-expressed with a marked, or even exclusive, localization in the placenta. Here, we summarize our knowledge on the evolutionary, molecular, and physiological relevance of these epigenetically-regulated, recently-evolved miRNAs, by focusing on their roles in placentation and possibly also in pregnancy diseases (e.g., preeclampsia, intrauterine growth restriction, preterm birth).
Collapse
Affiliation(s)
- E Cécile Malnou
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - David Umlauf
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Maïlys Mouysset
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
27
|
Mavreli D, Papantoniou N, Kolialexi A. miRNAs in pregnancy-related complications: an update. Expert Rev Mol Diagn 2018; 18:587-589. [DOI: 10.1080/14737159.2018.1480939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Danai Mavreli
- 3rd Department of Obstetrics & Gynecology, Athens University School of Medicine, Athens, Greece
- Department of Medical Genetics, Athens University School of Medicine, Athens, Greece
| | - Nikolas Papantoniou
- Department of Medical Genetics, Athens University School of Medicine, Athens, Greece
| | - Aggeliki Kolialexi
- 3rd Department of Obstetrics & Gynecology, Athens University School of Medicine, Athens, Greece
- Department of Medical Genetics, Athens University School of Medicine, Athens, Greece
| |
Collapse
|
28
|
Schmidt JK, Block LN, Golos TG. Defining the rhesus macaque placental miRNAome: Conservation of expression of placental miRNA clusters between the macaque and human. Placenta 2018; 65:55-64. [PMID: 29908642 DOI: 10.1016/j.placenta.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Expression of microRNAs (miRNAs) in the human placenta is dynamic across gestation, with expression of miRNAs belonging to the C14MC, C19MC and miR-371-3 clusters. Specifically, miRNAs within the C19MC cluster are exclusively expressed in primates with predominant expression in the placenta. Non-human primates can be utilized to study developmental processes of placentation in vivo that cannot be assessed in the human placenta, however, miRNA expression has not been defined in the macaque placenta. Our objective was to profile miRNAs in the macaque placenta, hypothesizing that expression is conserved between the macaque and human placenta. METHODS Total RNA from first trimester and term macaque placentas (n = 4 per group) was analyzed through RNA-sequencing and validated by quantitative real-time PCR (qRT-PCR). RESULTS A total of 607 pre-miRNAs previously annotated in the macaque reference database (miRBase21) were detected, and 166 miRNAs were differentially expressed between first trimester and term placentas. A total of 457 unannotated sequences were detected and deemed candidate novel miRNAs by miRDeep2 software. Differential expression was confirmed for six of nine miRNAs evaluated by qRT-PCR. Comparative analysis demonstrated expression of several miRNA orthologs of human pregnancy-associated miRNA clusters in the macaque placenta. CONCLUSIONS Profiling placental miRNAs of the macaque revealed conserved expression of a number of miRNAs within the C14MC, C19MC and miR-371-3 clusters between the human and macaque. These results establish non-human primates as a model for human placentation and miRNA biology, with the prediction of their functional significance in placental development and function.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|