1
|
Zhou Q, Zhang X, Chen S, Fan C, Wan K, Wu C, Wang X, Zhang W, Jiang H. Shugan Jianpi Formula attenuate liver fibrosis via regulation of miR-193a-3p/TGF-β2 in hepatic stellate cells: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119120. [PMID: 39603398 DOI: 10.1016/j.jep.2024.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal medicine Shugan Jianpi Formula (SGJPF) has traditionally been used to treat various chronic liver disorders. Previous studies have indicated that SGJPF inhibits hepatic stellate cells (HSCs) activation in rats with liver fibrosis (LF) and that miR-193a-3p may be a crucial molecule in LF. However, the mechanisms by which SGJPF regulates HSCs activation through miR-193a-3p remain unclear. AIM OF THE STUDY This study aimed to determine whether the effect of SGJPF on LF is related to its regulation of miR-193a-3p and TGF-β2, both in a carbon tetrachloride (CCl4)-induced LF mouse model and in TGF-β1-induced JS-1 cells. MATERIALS AND METHODS A CCl4-induced LF mouse model was established to evaluate the anti-fibrotic efficacy of SGJPF by examining liver histopathological changes, collagen deposition, and the expression of α-smooth muscle actin (α-SMA) and collagen-I. To investigate the role of miR-193a-3p in HSCs activation, miR-193a-3p mimics and inhibitors were transfected into TGF-β1-induced JS-1 cells. The potential targets of miR-193a-3p were identified using miRDB, TargetScan 8.0, RNA-seq, and dual-luciferase reporter assays. Finally, the effects of SGJPF on HSCs activation and the miR-193a-3p/TGF-β2 axis were assessed in TGF-β1-treated JS-1 cells using CCK-8, EDU, scratch, RT-qPCR, and Western blotting assays. RESULTS SGJPF significantly reduced liver damage and fibrosis, inhibited HSCs activation, decreased TGF-β2 levels, and increased miR-193a-3p expression in CCl4-induced LF tissue. Additionally, miR-193a-3p was upregulated in HSCs transfected with miR-193a-3p mimics and downregulated in those with miR-193a-3p inhibitors. High levels of miR-193a-3p, combined with miRNA mimics, inhibited HSCs activation, proliferation, and migration. TGF-β2, a target negatively regulated by miR-193a-3p, partially reversed the effects of miR-193a-3p on TGF-β1-induced HSCs activation. SGJPF also reduced HSCs activation, proliferation, and migration in TGF-β1-treated JS-1 cells. Moreover, treatment with SGJPF-containing serum and miR-193a-3p inhibition restored HSCs activation, proliferation, and migration in TGF-β1-induced JS-1 cells. CONCLUSIONS This study demonstrates that SGJPF ameliorates CCl4-induced liver fibrosis, which is associated with the regulation of miR-193a-3p and TGF-β2 in HSCs. These findings provide a new pharmacological basis for SGJPF and suggest a novel strategy for treating LF through TCM by regulating miRNAs.
Collapse
Affiliation(s)
- Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Sen Chen
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Kaiqiang Wan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chao Wu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoli Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Afliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Afliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China; Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Afliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
3
|
Ruan Y, Ren G, Wang M, Lv W, Shimizu K, Zhang C. The dual role of 20(S)-protopanaxadiol in alleviating pulmonary fibrosis through the gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155699. [PMID: 38733907 DOI: 10.1016/j.phymed.2024.155699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pulmonary Fibrosis (PF) is a progressive lung disease characterized by the diffuse interstitial tissue, leading to severe breathing difficulties. The existing treatment methods are primarily aimed at slowing the progression of the disease, underscoring the urgent need to discover new drug interventions targeting novel sites. The "gut-lung axis" represents a complex bidirectional communication system where the gut microbiota not only influences lung immunity but also responds to lung-derived signals. Recent advances have uncovered that alterations in gut microbiota composition can significantly impact respiratory diseases, offering new insights into their pathogenesis and potential therapeutic approaches. METHODS This study is based on the fundamental concepts of the lung-gut axis and our previous research, further exploring the potential mechanisms of 20(S)-Protopanaxadiol (PPD) in ginseng against PF. We utilized a bleomycin-induced mouse model of PF and employed metabolomics and 16S rRNA sequencing to investigate the pathways through which PPD regulates the pulmonary fibrosis process via the gut-lung axis. Finally, we employed strategies such as antibiotic-induced microbiota disruption and fecal microbiota transplantation (FMT) to provide a comprehensive perspective on how PPD regulates pulmonary fibrosis through gut microbiota. RESULTS The results of the bleomycin (BLM) mouse model of PF proved that PPD can directly act on the glycolysis- related metabolic reprogramming process in lung and the AMPK/STING pathway to improve PF. Combined the analysis of gut microbiota and related metabolites, we found that PPD can regulate the process of PF through the gut-lung axis target points G6PD and SPHK1. FMT and antibiotic-induced microbiota disruption further confirmed intermediate effect of gut microbiota in PF process and the treatment of PPD. Our study suggests that PPD can alleviate the process of pulmonary fibrosis either by directly acting on the lungs or by regulating the gut microbiota. CONCLUSION This study positions PPD as a vanguard in the therapeutic landscape for pulmonary fibrosis, offering a dual mechanism of action that encompasses both modulation of gut microbiota and direct intervention at molecular targets. These insights highlight the immense therapeutic potential of harnessing the gut-lung axis.
Collapse
Affiliation(s)
- Yang Ruan
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China; Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Guoqing Ren
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China
| | - Mingchun Wang
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China
| | - Weichao Lv
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Chaofeng Zhang
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China.
| |
Collapse
|
4
|
Wu X, Zhang Y, Ji M, Yang W, Deng T, Hou G, Shi L, Xun W. AhR Activation Ameliorates Intestinal Barrier Damage in Immunostressed Piglets by Regulating Intestinal Flora and Its Metabolism. Animals (Basel) 2024; 14:794. [PMID: 38473179 DOI: 10.3390/ani14050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The primary factor leading to elevated rates of diarrhea and decreased performance in piglets is immunological stress. The regulation of immune stress through the intestinal flora is a crucial mechanism to consider. In total, 30 weaned piglets were randomly allocated to five groups: the basal diet group (Control), basal diet + lipopolysaccharides group (LPS), basal diet + 250 μg/kg 6-Formylindolo [3,2-b] carbazole + LPS group (FICZ), basal diet + 3mg/kg Cardamonin + LPS group (LCDN), and basal diet + 6mg/kg Cardamonin + LPS group (HCDN/CDN). The results showed that compared with those of the LPS group, the expression of tight junction proteins (occludin; claudin-1) in the FICZ group was significantly increased, and the mRNA levels of IL-1β and TNF-α were significantly reduced (p < 0.05). HCDN treatment had a better effect on LPS-induced intestinal barrier damage in this group than it did in the LCDN group. HCDN treatment leads to a higher villus height (VH), a higher ratio of villi height to crypt depth (V/C), higher tight junction proteins (ZO-1; occludin), and higher short-chain fatty acids (SCFAs). In addition, correlation analyses showed that Succinivibrio was positively correlated with several SCFAs and negatively correlated with prostaglandin-related derivatives in the FICZ group and CDN group (p < 0.05). In summary, Cardamonin alleviates intestinal mucosal barrier damage and inflammatory responses by regulating the intestinal microbiota and its metabolism.
Collapse
Affiliation(s)
- Xiaomei Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yalei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mengyao Ji
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wen Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Tanjie Deng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Wenjuan Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Liu Y, Wang J, Dou T, Zhou L, Guan X, Liu G, Li X, Han M, Chen X. The liver metabolic features of Mogroside V compared to Siraitia grosvenorii fruit extract in allergic pneumonia mice. Mol Immunol 2022; 145:80-87. [PMID: 35305534 DOI: 10.1016/j.molimm.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND For a long time, Siraitia grosvenorii fruit extract (SGFE) and its dominant compounds, mogroside V(MV) were both reported to have therapeutic effects on allergic pneumonia, while previous studies only stay on phenotype and mechanism of the two active ingredients, hardly have any studies compared the two ingredients on the effect of liver metabolic, and revealed the relationship between mechanism and liver metabolism. OBJECTIVE Here we elucidated and compared the curative mechanisms of SGFE and MV on allergic pneumonia through liver metabolomics. METHODS We established allergic pneumonia mice using ovalbumin, then treated the mice with SGFE, MV and positive drug of Suhuang Zhike Jiaonang. The effects of the drugs were evaluated by detecting inflammatory cytokines, pathological examination and liver oxidative stress biomarkers. We explored the metabolic features between SGFE and MV through liver metabolomics consequently. RESULTS At phenotype, we confirmed that MV and SGFE both inhibited the expression of inflammatory cytokines including interleukins-5 (IL-5), IL-13, IL-17 and OVA-induced immunoglobulin E, which can also relieve inflammatory cells infiltration and mesenchymal thickening in lung tissue compared with positive drug. In addition, both of them can alleviate oxidative stress damage in liver, while MV showed a superior effect than SGFE. In metabolomic analysis, the two ingredients were found to ameliorate inflammatory and oxidative reaction mainly in controlling pathways of Riboflavin metabolism and Glutathione metabolism. While SGFE were found to control other metabolic pathways such as Phenylalanine metabolism, Sphingolipid metabolism, Glycerollipid metabolism, Glycine, serine and threonine metabolism and Arginine and proline metabolism. CONCLUSION From the results we can infer that the minor ingredients except MV in SGFE contribute poor function to the treatment of allergic pneumonia and MV may be the main functional constituent that relieve allergic pneumonia in SGFE. This study will be beneficial to figuring out a systematic theory of Siraitia grosvenorii active ingredients and proposing a guidance for pharmacology development.
Collapse
Affiliation(s)
- Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Juan Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, PR China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China; Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| |
Collapse
|
6
|
Wu F, Ning L, Zhou R, Shen A. Screening and evaluation of key genes in contributing to pathogenesis of hepatic fibrosis based on microarray data. Eur J Med Res 2020; 25:43. [PMID: 32943114 PMCID: PMC7499914 DOI: 10.1186/s40001-020-00443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatic fibrosis (HF), which is characterized by the excessive accumulation of extracellular matrix (ECM) in the liver, usually progresses to liver cirrhosis and then death. To screen differentially expressed (DE) long non-coding RNAs (lncRNAs) and mRNAs, explore their potential functions to elucidate the underlying mechanisms of HF. METHODS The microarray of GSE80601 was downloaded from the Gene Expression Omnibus database, which is based on the GPL1355 platform. Screening for the differentially expressed LncRNAs and mRNAs was conducted between the control and model groups. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the biological functions and pathways of the DE mRNAs. Additionally, the protein-protein interaction (PPI) network was delineated. In addition, utilizing the Weighted Gene Co-expression Network Analysis (WGCNA) package and Cytoscape software, we constructed lncRNA-mRNA weighted co-expression networks. RESULTS A total of 254 significantly differentially expressed lncRNAs and 472 mRNAs were identified. GO and KEGG analyses revealed that DE mRNAs regulated HF by participating in the GO terms of metabolic process, inflammatory response, response to wounding and oxidation-reduction. DE mRNAs were also significantly enriched in the pathways of ECM-receptor interaction, PI3K-Akt signaling pathway, focal adhesion (FA), retinol metabolism and metabolic pathways. Moreover, 24 lncRNAs associated with 40 differentially expressed genes were observed in the modules of lncRNA-mRNA weighted co-expression network. CONCLUSIONS This study revealed crucial information on the molecular mechanisms of HF and laid a foundation for subsequent genes validation and functional studies, which could contribute to the development of novel diagnostic markers and provide new therapeutic targets for the clinical treatment of HF.
Collapse
Affiliation(s)
- Furong Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Lijuan Ning
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Sun L, Zhao M, Zhao Y, Wang M, Man J, Zhao C. Investigation of the therapeutic effect of Shaoyao Gancao decoction on CCL 4 -induced liver injury in rats by metabolomic analysis. Biomed Chromatogr 2020; 34:e4940. [PMID: 32634249 DOI: 10.1002/bmc.4940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Shaoyao Gancao decoction (SGD) is a famous Chinese traditional prescription for treating liver injury. In this research, we investigated the therapeutic effects of SGD on liver injury and its metabolic mechanisms using 1 H NMR and UPLC-MS. Serum biochemical indicators and histopathological methods were used to determine the mechanism of action of SGD in treating liver injury. An orthogonal partial least squares discriminant analysis method was used to screen potential metabolic markers, and the MetaboAnalyst and KEGG PATHWAY databases were used to find relevant metabolic pathways. A total of 26 significant metabolites were identified with significant changes in their abundance levels, and these metabolites are involved in many metabolic pathways such as amino acid and lipid metabolism. The changes in biomarker levels reveal the therapeutic effect of SGD on liver injury, which is of great significance to speculate on possible metabolic mechanisms.
Collapse
Affiliation(s)
- Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyi Man
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
8
|
A Network Pharmacology Approach to Explore the Mechanisms of Shugan Jianpi Formula in Liver Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4780383. [PMID: 32617108 PMCID: PMC7306883 DOI: 10.1155/2020/4780383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Purpose We explored the mechanism of Shugan Jianpi Formula (SGJPF) and its effective components for the treatment of liver fibrosis (LF). Materials and Methods We collected the active ingredients in SGJPF through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and screened the effective components by absorption, distribution, metabolism, and excretion. Herb-associated target proteins were predicted and screened based on the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine and Search Tool for Interactions of Chemicals databases. LF-associated target proteins were predicted and screened based on the Online Mendelian Inheritance in Man® Database and Comparative Toxicogenomics Database. Common genes with LF and herbs were selected, and Cytoscape 3.5.1 software was used to construct an herb pathway and component-LF common target network. The Search Tool for the Retrieval of Interacting Genes/Proteins was used to build a protein-protein interaction, and quantitative PCR was used to verify the related target genes. Finally, clusterProfiler was applied for the analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. Results The pharmacological network contained 252 active compounds (e.g., Astragaloside A, saikosaponin, linoleic acid, and Poria acid A), 84 common target genes, and 94 significant signaling pathways. Among them, interleukin 6 (IL-6), tumor protein 53 p53 (TP53), prostaglandin-endoperoxide synthase 2 (PTGS2), AKT1, IL-1β, and the nucleotide-binding and oligomerization domain-like receptor and Janus kinase-signal transducer and activator of transcription signaling pathways were selected as the critical target gene and critical signal pathway, respectively. Conclusion The mechanisms of SGJPF in protecting against LF include the regulation of multiple targets such as IL-6, TP53, PTGS2, and AKT1. These target proteins affect LF through various signal transduction pathways.
Collapse
|
9
|
Pomegranate peel extract ameliorates liver fibrosis induced by carbon tetrachloride in rats through suppressing p38MAPK/Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Wu Y, Li Z, Xiu AY, Meng DX, Wang SN, Zhang CQ. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2667-2676. [PMID: 31534314 PMCID: PMC6681906 DOI: 10.2147/dddt.s210797] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/30/2019] [Indexed: 12/24/2022]
Abstract
Aim To investigate the effect of carvedilol on liver fibrosis and hepatic sinusoidal capillarization in mice with carbon tetrachloride (CCl4)-induced fibrosis. Methods A liver fibrosis mouse model was induced by intraperitoneal CCl4 injection for 8 weeks. The mice were divided into five experimental groups: the normal group, the oil group, the CCl4 group, the CCl4+carvedilol (5 mg/kg/d) group, and the CCl4+carvedilol (10 mg/kg/d) group. The extent of liver fibrosis was evaluated by histopathological staining, and the changes in fenestrations of hepatic sinus endothelial cells were observed by scanning electron microscope (SEM). The expression of α-smooth muscle actin (α-SMA) and vascular endothelial markers was detected by immunohistochemistry and Western blot assays. The effect of carvedilol on cell apoptosis was studied via Terminal deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling (TUNEL) assay, and the serum levels of matrix metalloproteinase-8 (MMP-8), vascular endothelial growth factor (VEGF), and angiopoietin-2 were detected through a Luminex assay. Results Liver fibrosis in CCl4-treated mice was attenuated by reduced accumulation of collagen and the reaction of inflammation with carvedilol treatment. Carvedilol reduced the activation of hepatic stellate cells (HSCs) and increased the number of apoptotic cells. The expression of α-SMA, CD31, CD34 and VWF (von Willebrand factor) was significantly decreased after carvedilol treatment. In addition, the number of fenestrae in the hepatic sinusoid showed notable differences between the groups, and the serum levels of MMP-8, VEGF and angiopoietin-2 were increased in the mice with liver fibrosis and reduced by carvedilol treatment. Conclusion The study demonstrated that carvedilol could prevent further development of liver fibrosis and hepatic sinusoidal capillarization in mice with CCl4-induced fibrosis.
Collapse
Affiliation(s)
- Ying Wu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zhen Li
- Department of Health Digestion, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Ai-Yuan Xiu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Dong-Xiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Si-Ning Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
11
|
Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol 2019; 75:105765. [PMID: 31336335 DOI: 10.1016/j.intimp.2019.105765] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is the most common pathological feature of most chronic liver diseases, and its continuous deterioration gradually develops into liver cirrhosis and eventually leads to liver cancer. At present, there are many kinds of drugs used to treat liver fibrosis. However, Western drugs tend to only target single genes/proteins and induce many adverse reactions. Most of the mechanisms and active ingredients of traditional Chinese medicine (TCM) are not clear, and there is a lack of unified diagnosis and treatment standards. Natural products, which are characterized by structural diversity, low toxicity, and origination from a wide range of sources, have unique advantages and great potential in anti-liver fibrosis. This article summarizes the work done over the previous decade, on the active ingredients in natural products that are reported to have anti-hepatic fibrosis effects. The effective anti-hepatic fibrosis ingredients identified can be generally divided into flavonoids, saponins, polysaccharides and alkaloids. Mechanisms of anti-liver fibrosis include inhibition of liver inflammation, anti-lipid peroxidation injury, inhibition of the activation and proliferation of hepatic stellate cells (HSCs), modulation of the synthesis and secretion of pro-fibrosis factors, and regulation of the synthesis and degradation of the extracellular matrix (ECM). This review provides suggestions for the development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Liang Shan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhenni Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Leilei Ci
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen Shuai
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Li Q, Li Z, Lin Y, Che H, Hu Y, Kang X, Zhang Y, Wang L, Zhang Y. High glucose promotes hepatic fibrosis via miR‑32/MTA3‑mediated epithelial‑to‑mesenchymal transition. Mol Med Rep 2019; 19:3190-3200. [PMID: 30816482 PMCID: PMC6423609 DOI: 10.3892/mmr.2019.9986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is characterized by the aberrant production and deposition of extracellular matrix (ECM) proteins. Growing evidence indicates that the epithelial‑mesenchymal transition serves a crucial role in the progression of liver fibrogenesis. Although a subset of microRNAs (miRNAs or miRs) has recently been identified as essential regulators of the EMT gene expression, studies of the EMT in hyperglycemic‑induced liver fibrosis are limited. In the current study, it was observed that high glucose‑treated AML12 cells occurred EMT process, and miR‑32 expression was markedly increased in the liver tissue of streptozotocin‑induced diabetic rats and in high glucose‑treated AML12 cells. Additionally, the contribution of the EMT to liver fibrosis by targeting metastasis‑associated gene 3 (MTA3) under hyperglycemic conditions was suppressed by AMO‑32. The results indicated that miR‑32 and MTA3 may be considered as novel drug targets in the prevention and treatment of liver fibrosis under hyperglycemic conditions. These finding improves the understanding of the progression of liver fibrogenesis.
Collapse
Affiliation(s)
- Qiang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150030, P.R. China
| | - Zhange Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuan Lin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xujuan Kang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
13
|
Zhang Y, Li W, Zou L, Gong Y, Zhang P, Xing S, Yang H. Metabonomic study of the protective effect of Fukeqianjin formula on multi-pathogen induced pelvic inflammatory disease in rats. Chin Med 2018; 13:61. [PMID: 30555525 PMCID: PMC6288860 DOI: 10.1186/s13020-018-0217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background Fukeqianjin formula has been effectively used in the treatment of pelvic inflammatory disease (PID) and the related complications in clinic. Although there have been some studies about the underlying mechanism that focus on its anti-inflammatory and immunoregulatory activities. But the mechanism is still not fully understood. The aim of this study was to investigate the alteration of plasma metabolic profiles in PID rats and the regulatory effect of Fukeqianjin formula on potential biomarkers. Methods Pelvic inflammatory model was established by intrauterine inoculation of multiple pathogens combined with mechanical injury of endometrium. Rats were randomly divided into normal group, model group, azithromycin group, high-and low-dose of Fukeqianjin formula treatment group (FF-H, and FF-L, respectively). After 14 days of intragastric administration, the plasm levels of interleukin-1β (IL-1β) and nitric oxide (NO) were measured. To further recognize and identify potential biomarkers and metabolic pathways, an ultra-performance liquid chromatography-quadrupole-Exactive Orbitrap-mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) metabonomic method combined with multivariate analyses including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA), was employed to analyze the metabolic profiling. Results Compared with normal group, the plasma levels of IL-1β and NO were significantly increased in the PID model group (P < 0. 05), and obviously decreased after high-dose intervention of Fukeqianjin formula (P < 0. 01). The PCA, PLS-DA and OPLS-DA analysis showed that PID rats were clearly separated from normal rats. Compared with the PID model group, the metabolite profiles of Fukeqianjin formula treatment group was gradually restored to normal. Meanwhile, 14 potential metabolite biomarkers, which were mainly related to the metabolic pathways of intervening glycerophospholipid metabolism, linoleic acid metabolism/alpha-linolenic acid metabolism, amino acid metabolism, arachidonic acid metabolism, and unsaturated fatty acids biosynthesis, have been identified. Fukeqianjin formula exerts good regulatory effect on the abnormal metabolism of PID rats. Conclusions Intrauterine inoculation of multiple pathogens combined with mechanical injury of endometrium could significantly disturb the plasma metabolic profiles of rats. Fukeqianjin formula has potential therapeutic effect on multi-pathogen-induced PID by ameliorating metabolism disorders and alleviating the inflammatory response. Electronic supplementary material The online version of this article (10.1186/s13020-018-0217-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zhang
- 1School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu, 610106 Sichuan People's Republic of China
| | - Wei Li
- 1School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu, 610106 Sichuan People's Republic of China
| | - Liang Zou
- 1School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu, 610106 Sichuan People's Republic of China
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Ltd. Co., No. 801 Zhuzhou Avenue, Tianyuan District, Zhuzhou, 412000 Hunan People's Republic of China
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Ltd. Co., No. 801 Zhuzhou Avenue, Tianyuan District, Zhuzhou, 412000 Hunan People's Republic of China
| | - Shasha Xing
- 3Drug Clinical Trial Center, Affiliated Hospital of Chengdu University, 2nd Ring Road, Jinniu District, Chengdu, 610081 Sichuan People's Republic of China
| | - Hang Yang
- 1School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu, 610106 Sichuan People's Republic of China
| |
Collapse
|
14
|
Shi T, Burton S, Wang Y, Xu S, Zhang W, Yu L. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:17-23. [PMID: 30497706 DOI: 10.1016/j.pestbp.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
The cyano-substituted neonicotinoid insecticide, thiacloprid, is nowadays widely used in agriculture for controlling insect pests. However, it also simultaneously has adverse effects on the health of important pollinators, such as honey bees. Previous studies have reported that sublethal doses of neonicotinoids impaired immunocompetence, learning and memory performance, and homing behaviour in honey bees. In the present study, using LC-MS-based combined with GC-MS-based metabolomic approaches, we profiled the metabolic changes that occur in the head of honey bee after subchronic exposure to 2 mg/L thiacloprid over 3 days. The estimated total dose of thiacloprid fed to each bee was 0.12 μg. The results showed that there were 115 metabolites significantly affected in thiacloprid-treated bees compared to control. The metabolites with high level of abundance enriched to wide range pathways associated with oxidative stress and detoxification suggest that the honey bees have activated their detoxification system to resistant toxicity of thiacloprid. While, the reduction of serotonin suggest thiacloprid may hinder the brain activity implicated in learning and behaviour development. Our study expand the understanding of the molecular basis of the complex interactions between neonicotinoids and honey bees.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Sawyer Burton
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yufei Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shengyun Xu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|