1
|
Zhou Y, Wang T, Fan H, Liu S, Teng X, Shao L, Shen Z. Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism. Curr Probl Cardiol 2024; 49:102040. [PMID: 37595858 DOI: 10.1016/j.cpcardiol.2023.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Targeting Ferroptosis Holds Potential for Intervertebral Disc Degeneration Therapy. Cells 2022; 11:cells11213508. [PMID: 36359904 PMCID: PMC9653619 DOI: 10.3390/cells11213508] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common pathological condition responsible for lower back pain, which can significantly increase economic and social burdens. Although considerable efforts have been made to identify potential mechanisms of disc degeneration, the treatment of IVDD is not satisfactory. Ferroptosis, a recently reported form of regulated cell death (RCD), is characterized by iron-dependent lipid peroxidation and has been demonstrated to be responsible for a variety of degenerative diseases. Accumulating evidence suggests that ferroptosis is implicated in IVDD by decreasing viability and increasing extracellular matrix degradation of nucleus pulposus cells, annulus fibrosus cells, or endplate chondrocytes. In this review, we summarize the literature regarding ferroptosis of intervertebral disc cells and discuss its molecular pathways and biomarkers for treating IVDD. Importantly, ferroptosis is verified as a promising therapeutic target for IVDD.
Collapse
|
3
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Ma S, Lu G, Zhang Q, Ding N, Jie Y, Zhang H, Xu L, Xie L, Yang X, Zhang H, Jiang Y. Extracellular-superoxide dismutase DNA methylation promotes oxidative stress in homocysteine-induced atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1222-1233. [PMID: 35866603 PMCID: PMC9827811 DOI: 10.3724/abbs.2022093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the present study, we investigate the effect of homocysteine (Hcy) on extracellular-superoxide dismutase (EC-SOD) DNA methylation in the aorta of mice, and explore the underlying mechanism in macrophages, trying to identify the key targets of Hcy-induced EC-SOD methylation changes. ApoE -/- mice are fed different diets for 15 weeks, EC-SOD and DNA methyltransferase 1 (DNMT1) expression levels are detected by RT-PCR and western blot analysis. EC-SOD methylation levels are assessed by ntMS-PCR. After EC-SOD overexpression or knockdown in macrophages, following the transfection of macrophages with pEGFP-N1-DNMT1, the methylation levels of EC-SOD are detected. Our data show that the concentrations of Hcy and the area of atherogenic lesions are significantly increased in ApoE -/- mice fed with a high-methionine diet, and have a positive correlation with the levels of superoxide anions, which indicates that Hcy-activated superoxide anions enhance the development of atherogenic lesions. EC-SOD expression is suppressed by Hcy, and the content of superoxide anion is increased when EC-SOD is silenced by RNAi in macrophages, suggesting that EC-SOD plays a major part in oxidative stress induced by Hcy. Furthermore, the promoter activity of EC-SOD is increased following transfection with the -1/-1100 fragment, and EC-SOD methylation level is significantly suppressed by Hcy, and more significantly decreased upon DNMT1 overexpression. In conclusion, Hcy may alter the DNA methylation status and DNMT1 acts as the essential enzyme in the methyl transfer process to disturb the status of EC-SOD DNA methylation, leading to decreased expression of EC-SOD and increased oxidative stress and atherosclerosis.
Collapse
Affiliation(s)
- Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Guanjun Lu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,Department of UrologyClinical School of MedicineNingxia Medical UniversityYinchuan750004China
| | - Qing Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Yuzhen Jie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China,Department of UrologyClinical School of MedicineNingxia Medical UniversityYinchuan750004China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Lingbo Xu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China,Departments of Prenatal DiagnosisMaternal and Child health Hospital of Hunan ProvinceChangsha410008China,Correspondence address: Tel: +86-731-84332201; E-mail: (H.Z.) / Tel: +86-951-6980002; E-mail: (Y.J.) @163.com
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China,Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China,The School of Basic Medical SciencesNingxia Medical University Yinchuan 750004China,Correspondence address: Tel: +86-731-84332201; E-mail: (H.Z.) / Tel: +86-951-6980002; E-mail: (Y.J.) @163.com
| |
Collapse
|
5
|
Zhang Z, Wang L, Zhan Y, Xie C, Xiang Y, Chen D, Wu Y. Clinical value and expression of Homer 1, homocysteine, S-adenosyl-l-homocysteine, fibroblast growth factors 23 in coronary heart disease. BMC Cardiovasc Disord 2022; 22:215. [PMID: 35546659 PMCID: PMC9097103 DOI: 10.1186/s12872-022-02554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study aimed to explore clinical value and expression of Homer 1, S-adenosyl-l-homocysteine (SAH), homocysteine (Hcy), fibroblast growth factors (FGF) 23 in coronary heart disease (CHD). METHODS From March 2020 to April 2021, a total of 137 patients with CHD and 138 healthy subjects who came to our hospital for physical examination and had no cardiovascular disease were retrospectively enrolled, and they were assigned to the CHD group and the control group, respectively. Patients in the CHD group were divided into stable angina pectoris (SAP) group (n = 48), unstable angina pectoris (UAP) group (n = 46), and acute myocardial infarction (AMI) group (n = 43) according to clinical characteristics for subgroup analysis. The degree of coronary artery stenosis was assessed by Gensini score, which is a reliable assessment tool for the severity of coronary artery disease. The levels of Homer 1, SAH, Hcy, and FGF 23 were tested and compared. Spearman correlation analysis was used to analyze the correlation between serum Homer1, SAH, Hcy, FGF23 levels and Gensini score, and multivariate unconditional Logistic regression was used to analyze the risk factors of coronary heart disease. RESULTS Demographic characteristics of each group were comparable (P > 0.05). The body mass index (BMI), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and glucose levels of the SAP group, UAP group and AMI group were significantly higher than those of the control group, and the number of patients with smoking, alcohol consumption, hypertension, and diabetes history was significantly more than that of the control group, respectively (P < 0.05). The level of high-density lipoprotein cholesterol (HDL-C) of each subgroup was significantly lower than the control group (P < 0.05). The above indicators showed no significant difference among three subgroups (P > 0.05). Serum SAH, Hcy, Homer1 and FGF23 levels in each subgroup were significantly higher than those in control group (P < 0.05). And above indicators in SAP group and UAP group were significantly lower than those in AMI group (P < 0.05), and the levels of above indicators in SAP group were significantly lower than those in UAP group (P < 0.05). The results of Spearman correlation analysis showed that serum Homer1, FGF23, SAH, Hcy levels were positively correlated with Gensini score (r = 0.376, 0.623, 0.291, 0.372, all P < 0.01). Multivariate logistic regression analysis showed that smoking, hypertension, diabetes, alcohol consumption, obesity, HDL-C, FGF23, SAH, Hcy, Homer 1 were independent risk factors for coronary heart disease. CONCLUSION The levels of FGF23, SAH, Hcy, and Homer1 tend to increase in patients with CHD compared with normal population, and the more severe the disease, the higher the levels, which has certain reference value for the clinical diagnosis of CHD and the evaluation and monitoring of the disease.
Collapse
Affiliation(s)
- Zhixin Zhang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Lin Wang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Yu Zhan
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Cui Xie
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Yang Xiang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Dan Chen
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - You Wu
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
6
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
7
|
Wu X, Bian F, Hu H, Zhu T, Li C, Zhou Q. Effects of Kindlin-2 on proliferation and migration of VSMC and integrinβ1 andβ3 activity via FAK-PI3K signaling pathway. PLoS One 2020; 15:e0225173. [PMID: 32603328 PMCID: PMC7326154 DOI: 10.1371/journal.pone.0225173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023] Open
Abstract
Vascular hyperplasia after vascular trauma is one of the difficult problems in clinical treatment. Nowadays, there is no effective treatment for vascular hyperplasia. Previous studies have shown that integrinβ1 andβ3 activity play an important role in vascular hyperplasia. Kindlin-2 has been shown to modulate integrinβ1 andβ3 activity in cancer. Therefore, in this study, we hope to explore the relationship between Kindlin-2 and vascular hyperplasia. We overexpressed or knocked down Kindlin-2 by adenovirus. The results showed that Kindlin-2 overexpression could regulate integrinβ1 andβ3 activity through FAK-PIK3 signaling pathways ex vivo and in vivo, thereby affecting the proliferation and migration of VSMC, and then it causes the consequences of vascular hyperplasia. Therefore, Our results show that Kindlin-2 may be a potential target for the treatment of vascular hyperplasia.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
| | - Fang Bian
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
| | - He Hu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
| | - Tongjian Zhu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
| | - Chenyu Li
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
| | - Qing Zhou
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China
- * E-mail:
| |
Collapse
|
8
|
Strand KA, Lu S, Mutryn MF, Li L, Zhou Q, Enyart BT, Jolly AJ, Dubner AM, Moulton KS, Nemenoff RA, Koch KA, LaBarbera DV, Weiser-Evans MCM. High Throughput Screen Identifies the DNMT1 (DNA Methyltransferase-1) Inhibitor, 5-Azacytidine, as a Potent Inducer of PTEN (Phosphatase and Tensin Homolog): Central Role for PTEN in 5-Azacytidine Protection Against Pathological Vascular Remodeling. Arterioscler Thromb Vasc Biol 2020; 40:1854-1869. [PMID: 32580634 DOI: 10.1161/atvbaha.120.314458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. CONCLUSIONS Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.
Collapse
Affiliation(s)
- Keith A Strand
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Sizhao Lu
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Marie F Mutryn
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Linfeng Li
- School of Pharmacy and Pharmaceutical Sciences (L.L., Q.Z., D.V.L.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Qiong Zhou
- School of Pharmacy and Pharmaceutical Sciences (L.L., Q.Z., D.V.L.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Blake T Enyart
- School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,Division of Cardiology, Department of Medicine (B.T.E., K.S.M., K.A.K.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Austin J Jolly
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Allison M Dubner
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Karen S Moulton
- School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,Division of Cardiology, Department of Medicine (B.T.E., K.S.M., K.A.K.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Raphael A Nemenoff
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Keith A Koch
- School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,Division of Cardiology, Department of Medicine (B.T.E., K.S.M., K.A.K.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Daniel V LaBarbera
- School of Pharmacy and Pharmaceutical Sciences (L.L., Q.Z., D.V.L.), University of Colorado, Anschutz Medical Campus, Aurora
| | - Mary C M Weiser-Evans
- From the Division of Renal Diseases and Hypertension, Department of Medicine (K.A.S., S.L., M.F.M., A.J.J., A.M.D., R.A.N., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora.,School of Medicine, Consortium for Fibrosis Research & Translation (B.T.E., K.S.M., R.A.N., K.A.K., M.C.M.W.-E.), University of Colorado, Anschutz Medical Campus, Aurora
| |
Collapse
|
9
|
Jia L, Zeng Y, Hu Y, Liu J, Yin C, Niu Y, Wang C, Li J, Jia Y, Hong J, Zhao R. Homocysteine impairs porcine oocyte quality via deregulation of one-carbon metabolism and hypermethylation of mitochondrial DNA†. Biol Reprod 2020; 100:907-916. [PMID: 30395161 DOI: 10.1093/biolre/ioy238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/22/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023] Open
Abstract
Homocysteine (Hcy) is an intermediate in the one-carbon metabolism that donates methyl groups for methylation processes involved in epigenetic gene regulation. Although poor oocyte quality in polycystic ovarian syndrome (PCOS) patients is associated with elevated Hcy concentration in serum and follicular fluid, whether Hcy directly affects oocyte quality and its mechanisms are poorly understood. Here we show that Hcy treatment impaired oocyte quality and developmental competence, indicated by significantly reduced survival rate, polar body extrusion rate, and cleavage rate. Hcy treatment resulted in mitochondrial dysfunction, with increased production of mitochondrial ROS, reduced mtDNA copy number, and the expression of 7 out of 13 mtDNA-encoded genes and 2 ribosome RNA genes, 12S rRNA and 16S rRNA. Upon Hcy treatment, the expression of one-carbon metabolic enzymes and DNMT1 was enhanced. Interestingly, DNA methyltransferase inhibitor 5'AZA rescued Hcy-induced mitochondrial dysfunction, impaired oocyte quality and developmental competence. Concurrently, expression of one-carbon metabolic enzymes and methylation status of mtDNA coding sequences were also normalized, at least partially, by 5'AZA treatment. Our findings not only extend the understanding about how Hcy induces poor oocyte quality, but also contribute to a novel angle of identifying targets for enhancing the quality of oocyte from PCOS patients.
Collapse
Affiliation(s)
- Longfei Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yaqiong Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Chao Yin
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yingjie Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Chenfei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jian Hong
- College of Life Science and Technology, Yancheng Teachers University, Yancheng, P. R., China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
10
|
Guo W, Zhang H, Yang A, Ma P, Sun L, Deng M, Mao C, Xiong J, Sun J, Wang N, Ma S, Nie L, Jiang Y. Homocysteine accelerates atherosclerosis by inhibiting scavenger receptor class B member1 via DNMT3b/SP1 pathway. J Mol Cell Cardiol 2020; 138:34-48. [PMID: 31733201 DOI: 10.1016/j.yjmcc.2019.11.145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
Homocysteine (Hcy) is an independent risk factor for atherosclerosis, which is characterized by lipid accumulation in the atherosclerotic plaque. Increasing evidence supports that as the main receptor of high-density lipoprotein, scavenger receptor class B member 1 (SCARB1) is protective against atherosclerosis. However, the underlying mechanism regarding it in Hcy-mediated atherosclerosis remains unclear. Here, we found the remarkable inhibition of SCARB1 expression in atherosclerotic plaque and Hcy-treated foam cells, whereas overexpression of SCARB1 can suppress lipid accumulation in foam cells following Hcy treatment. Analysis of SCARB1 promoter showed that no significant change of methylation level was observed both in vivo and in vitro under Hcy treatment. Moreover, it was found that the negative regulation of DNMT3b on SCARB1 was due to the decreased recruitment of SP1 to SCARB1 promoter. Thus, we concluded that inhibition of SCARB1 expression induced by DNMT3b at least partly accelerated Hcy-mediated atherosclerosis through promoting lipid accumulation in foam cells, which was attributed to the decreased binding of SP1 to SCARB1 promoter. In our point, these findings will provide novel insight into an epigenetic mechanism for atherosclerosis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Huiping Zhang
- Prenatal Diagnosis Center of Ningxia Medical University General Hospital, Yinchuan, China
| | - Anning Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Pengjun Ma
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Lei Sun
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Mei Deng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Caiyan Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Jiantuan Xiong
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Nan Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Shengchao Ma
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China
| | - Lihong Nie
- Department of Physiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yideng Jiang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research (NingXia Medical University), Yinchuan, China.
| |
Collapse
|
11
|
Xu L, Hao H, Hao Y, Wei G, Li G, Ma P, Xu L, Ding N, Ma S, Chen AF, Jiang Y. Aberrant MFN2 transcription facilitates homocysteine-induced VSMCs proliferation via the increased binding of c-Myc to DNMT1 in atherosclerosis. J Cell Mol Med 2019; 23:4611-4626. [PMID: 31104361 PMCID: PMC6584594 DOI: 10.1111/jcmm.14341] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
It is well‐established that homocysteine (Hcy) is an independent risk factor for atherosclerosis. Hcy can promote vascular smooth muscle cell (VSMC) proliferation, it plays a key role in neointimal formation and thus contribute to arteriosclerosis. However, the molecular mechanism on VSMCs proliferation underlying atherosclerosis is not well elucidated. Mitofusin‐2 (MFN2) is an important transmembrane GTPase in the mitochondrial outer membrane and it can block cells in the G0/G1 stage of the cell cycle. To investigate the contribution of aberrant MFN2 transcription in Hcy‐induced VSMCs proliferation and the underlying mechanisms. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase in atherosclerotic plaque of APOE−/− mice with hyperhomocystinaemia (HHcy) as well as in VSMCs exposed to Hcy in vitro. The DNA methylation level of MFN2 promoter was obviously increased in VSMCs treated with Hcy, leading to suppressed promoter activity and low expression of MFN2. In addition, we found that the expression of c‐Myc was increased in atherosclerotic plaque and VSMCs treated with Hcy. Further study showed that c‐Myc indirectly regulates MFN2 expression is duo to the binding of c‐Myc to DNMT1 promoter up‐regulates DNMT1 expression leading to DNA hypermethylation of MFN2 promoter, thereby inhibits MFN2 expression in VSMCs treated with Hcy. In conclusion, our study demonstrated that Hcy‐induced hypermethylation of MFN2 promoter inhibits the transcription of MFN2, leading to VSMCs proliferation in plaque formation, and the increased binding of c‐Myc to DNMT1 promoter is a new and relevant molecular mechanism.
Collapse
Affiliation(s)
- Long Xu
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongyi Hao
- The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yinju Hao
- The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guo Wei
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guizhong Li
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Pengjun Ma
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lingbo Xu
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Ding
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shengchao Ma
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yideng Jiang
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
12
|
Ma SC, Zhang HP, Jiao Y, Wang YH, Zhang H, Yang XL, Yang AN, Jiang YD. Homocysteine-induced proliferation of vascular smooth muscle cells occurs via PTEN hypermethylation and is mitigated by Resveratrol. Mol Med Rep 2018; 17:5312-5319. [PMID: 29393420 DOI: 10.3892/mmr.2018.8471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a primary pathological event in the development of atherosclerosis (AS), and the presence of homocysteine (Hcy) acts as an independent risk factor for AS. However, the underlying mechanisms remain to be elucidated. Phosphatase and tensin homologue on chromosome 10 (PTEN), is endogenously expressed in VSMCs and induces multiple signaling networks involved in cell proliferation, survival and inflammation, however, the specific role of PTEN is still unknown. The present study detected the proliferation ratio of VSMCs following treatment with Hcy and Resveratrol (RSV). In the 100 µM Hcy group, the proliferation ratio increased, and treatment with RSV decreased the proliferation ratio induced by Hcy. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to analyze PTEN expression, RSV treatment was associated with decreased PTEN expression levels in VSMCs. PTEN levels were decreased in Hcy treated cells, and the proliferation ratio of VSMCs were increased following treated with Hcy. To study the mechanism of regulation of PTEN by Hcy, the present study detected PTEN methylation levels in VSMCs, and PTEN DNA methylation levels were demonstrated to be increased in the 100 µM Hcy group, whereas treatment with RSV decreased the methylation status. DNA methyltransferase 1 is important role in the regulation of PTEN methylation. Overall, Hcy impacts the methylation status of PTEN, which is involved in cell proliferation, and induces the proliferation of VSMCs. This effect is alleviated by treatment with RSV, which exhibits an antagonistic mechanism against Hcy.
Collapse
Affiliation(s)
- Sheng-Chao Ma
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Ping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yun Jiao
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan-Hua Wang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui Zhang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Ling Yang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - An-Ning Yang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Deng Jiang
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|