1
|
Hoeeg C, Follin B, Grandjean CE, Ripa RS, Ekblond A, Kastrup J, Binderup T, Kjaer A. Early Detection of Cardiotoxicity Using [ 64Cu]Cu-NODAGA-E[(cRGDyK)]2 PET Imaging in a Rat Model of Doxorubicin-Induced Heart Failure. Mol Pharm 2024; 21:3909-3920. [PMID: 38936409 DOI: 10.1021/acs.molpharmaceut.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Doxorubicin (DOX) is a common and highly effective chemotherapeutic. However, its use is limited by cardiotoxic effects and the lack of methods to detect these at early time points. In the present study, we evaluated if [64Cu]Cu-NODAGA-E[(cRGDyK)]2 positron emission tomography-computed tomography ([64Cu]Cu-RGD PET/CT) could detect cardiotoxicity in a rat model of DOX-induced heart failure. Male Lewis rats were divided into two groups and treated with either a cumulative dose of 15 mg/kg of DOX or left untreated. Cardiac anatomy and function were assessed using magnetic resonance imaging at baseline and in week 8. [64Cu]Cu-RGD PET/CT scans were performed in week 4. DOX treatment led to a decline in pump function as well as an increase in cardiac and thymic uptake of [64Cu]Cu-RGD. In addition, DOX altered cardiac gene expression, led to infiltration of immune cells, reduced endothelial content, and increased interstitial fibrosis. Furthermore, concentrations of inflammatory plasma proteins were increased in the DOX group. In conclusion, DOX treatment resulted in the development of cardiotoxicity and heart failure, which could be detected using [64Cu]Cu-RGD PET/CT at early time points. [64Cu]Cu-RGD uptake in the myocardial septum and thymus predicted a low left ventricular ejection fraction in week 8.
Collapse
Affiliation(s)
- Cecilie Hoeeg
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bjarke Follin
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Constance Eline Grandjean
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Tina Binderup
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Haider KH. Priming mesenchymal stem cells to develop "super stem cells". World J Stem Cells 2024; 16:623-640. [PMID: 38948094 PMCID: PMC11212549 DOI: 10.4252/wjsc.v16.i6.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, AlQaseem 52736, Saudi Arabia.
| |
Collapse
|
3
|
Kurup S, Tan C, Kume T. Cardiac and intestinal tissue conduct developmental and reparative processes in response to lymphangiocrine signaling. Front Cell Dev Biol 2023; 11:1329770. [PMID: 38178871 PMCID: PMC10764504 DOI: 10.3389/fcell.2023.1329770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphatic vessels conduct a diverse range of activities to sustain the integrity of surrounding tissue. Besides facilitating the movement of lymph and its associated factors, lymphatic vessels are capable of producing tissue-specific responses to changes within their microenvironment. Lymphatic endothelial cells (LECs) secrete paracrine signals that bind to neighboring cell-receptors, commencing an intracellular signaling cascade that preludes modifications to the organ tissue's structure and function. While the lymphangiocrine factors and the molecular and cellular mechanisms themselves are specific to the organ tissue, the crosstalk action between LECs and adjacent cells has been highlighted as a commonality in augmenting tissue regeneration within animal models of cardiac and intestinal disease. Lymphangiocrine secretions have been owed for subsequent improvements in organ function by optimizing the clearance of excess tissue fluid and immune cells and stimulating favorable tissue growth, whereas perturbations in lymphatic performance bring about the opposite. Newly published landmark studies have filled gaps in our understanding of cardiac and intestinal maintenance by revealing key players for lymphangiocrine processes. Here, we will expand upon those findings and review the nature of lymphangiocrine factors in the heart and intestine, emphasizing its involvement within an interconnected network that supports daily homeostasis and self-renewal following injury.
Collapse
Affiliation(s)
- Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Honors College, University of Illinois at Chicago, Chicago, IL, United States
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Maldonado VV, Patel NH, Smith EE, Barnes CL, Gustafson MP, Rao RR, Samsonraj RM. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023; 17:44. [PMID: 37434264 DOI: 10.1186/s13036-023-00361-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been carefully examined to have tremendous potential in regenerative medicine. With their immunomodulatory and regenerative properties, MSCs have numerous applications within the clinical sector. MSCs have the properties of multilineage differentiation, paracrine signaling, and can be isolated from various tissues, which makes them a key candidate for applications in numerous organ systems. To accentuate the importance of MSC therapy for a range of clinical indications, this review highlights MSC-specific studies on the musculoskeletal, nervous, cardiovascular, and immune systems where most trials are reported. Furthermore, an updated list of the different types of MSCs used in clinical trials, as well as the key characteristics of each type of MSCs are included. Many of the studies mentioned revolve around the properties of MSC, such as exosome usage and MSC co-cultures with other cell types. It is worth noting that MSC clinical usage is not limited to these four systems, and MSCs continue to be tested to repair, regenerate, or modulate other diseased or injured organ systems. This review provides an updated compilation of MSCs in clinical trials that paves the way for improvement in the field of MSC therapy.
Collapse
Affiliation(s)
- Vitali V Maldonado
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Neel H Patel
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Emma E Smith
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - C Lowry Barnes
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah M Samsonraj
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
5
|
Kahrizi MS, Mousavi E, Khosravi A, Rahnama S, Salehi A, Nasrabadi N, Ebrahimzadeh F, Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Res Ther 2023; 14:155. [PMID: 37287066 DOI: 10.1186/s13287-023-03374-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs)-based therapy brings the reassuring capability to regenerative medicine through their self-renewal and multilineage potency. Also, they secret a diversity of mediators, which are complicated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
Collapse
Affiliation(s)
| | - Elnaz Mousavi
- Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Khosravi
- Department of Periodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sara Rahnama
- Department of Pediatric Dentistry, School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Ahmed L, Al-Massri K. New Approaches for Enhancement of the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular Diseases. Tissue Eng Regen Med 2022; 19:1129-1146. [PMID: 35867309 DOI: 10.1007/s13770-022-00469-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain a major health concern worldwide, where mesenchymal stem cells (MSCs) therapy gives great promise in their management through their regenerative and paracrine actions. In recent years, many studies have shifted from the use of transplanted stem cells to their secreted exosomes for the management of various CVDs and cardiovascular-related diseases including atherosclerosis, stroke, myocardial infarction, heart failure, peripheral arterial diseases, and pulmonary hypertension. In different models, MSC-derived exosomes have shown beneficial outcomes similar to cell therapy concerning regenerative and neovascular actions in addition to their anti-apoptotic, anti-remodeling, and anti-inflammatory actions. Compared with their parent cells, exosomes have also demonstrated several advantages, including lower immunogenicity and no risk of tumor formation. However, the maintenance of stability and efficacy of exosomes after in vivo transplantation is still a major concern in their clinical application. Recently, new approaches have been developed to enhance their efficacy and stability including their preconditioning before transplantation, use of genetically modified MSC-derived exosomes, or their utilization as a targeted drug delivery system. Herein, we summarized the use of MSC-derived exosomes as therapies in different CVDs in addition to recent advances for the enhancement of their efficacy in these conditions.
Collapse
Affiliation(s)
- Lamiaa Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Khaled Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
7
|
Qian P, Wang Q, Wang FZ, Dai HB, Wang HY, Gao Q, Zhou H, Zhou YB. Adrenomedullin Improves Cardiac Remodeling and Function in Obese Rats with Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15060719. [PMID: 35745637 PMCID: PMC9227996 DOI: 10.3390/ph15060719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to determine whether adrenomedullin (ADM, 7.2 μg/kg/day, ip), an important endogenous active peptide, has a protective role in cardiac remodeling and function in obesity-related hypertension (OH) rats. A high-fat diet (HFD) was used to induce OH for 20 weeks. H9c2 cells incubated with palmitate (PA, 200 μM) to mimic high free fatty acid in obesity were used as an in vitro model. In OH rats, ADM not only decreased body weight (BW) and blood pressure (BP) but also improved systemic inflammation and oxidative stress. Moreover, ADM still had a greater inhibitory effect on local inflammation and oxidative stress in the hearts of OH rats, and the same anti-inflammatory and antioxidant effects were also confirmed in PA-treated H9c2 cells. The ADM receptor antagonist or Akt inhibitor effectively attenuated the inhibitory effects of ADM on inflammation and oxidative stress in PA-stimulated H9c2 cells. Furthermore, ADM application effectively normalized heart function, and hematoxylin-eosin and Masson staining and collagen volume fraction results showed that ADM improved cardiac remodeling in hearts of OH rats. ADM attenuated cardiac inflammation and oxidative stress via the receptor-Akt pathway, which involves the improvement of cardiac remodeling and function in OH rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ye-Bo Zhou
- Correspondence: ; Tel./Fax: +86-25-8686-9351
| |
Collapse
|
8
|
Molnar V, Pavelić E, Vrdoljak K, Čemerin M, Klarić E, Matišić V, Bjelica R, Brlek P, Kovačić I, Tremolada C, Primorac D. Mesenchymal Stem Cell Mechanisms of Action and Clinical Effects in Osteoarthritis: A Narrative Review. Genes (Basel) 2022; 13:genes13060949. [PMID: 35741711 PMCID: PMC9222975 DOI: 10.3390/genes13060949] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
With the insufficient satisfaction rates and high cost of operative treatment for osteoarthritis (OA), alternatives have been sought. Furthermore, the inability of current medications to arrest disease progression has led to rapidly growing clinical research relating to mesenchymal stem cells (MSCs). The availability and function of MSCs vary according to tissue source. The three primary sources include the placenta, bone marrow, and adipose tissue, all of which offer excellent safety profiles. The primary mechanisms of action are trophic and immunomodulatory effects, which prevent the further degradation of joints. However, the function and degree to which benefits are observed vary significantly based on the exosomes secreted by MSCs. Paracrine and autocrine mechanisms prevent cell apoptosis and tissue fibrosis, initiate angiogenesis, and stimulate mitosis via growth factors. MSCs have even been shown to exhibit antimicrobial effects. Clinical results incorporating clinical scores and objective radiological imaging have been promising, but a lack of standardization in isolating MSCs prevents their incorporation in current guidelines.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Pavelić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Kristijan Vrdoljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Martin Čemerin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Emil Klarić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Vid Matišić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Roko Bjelica
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | | | | | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Correspondence:
| |
Collapse
|
9
|
Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. Int J Mol Sci 2021; 22:ijms222313000. [PMID: 34884805 PMCID: PMC8657815 DOI: 10.3390/ijms222313000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Excessive cardiac fibrosis plays a crucial role in almost all types of heart disease. Generally, cardiac fibrosis is a scarring process triggered in response to stress, injury, or aging and is characterized by the accumulation of activated myofibroblasts that deposit high levels of extracellular matrix proteins in the myocardium. While it is beneficial for cardiac repair in the short term, it can also result in pathological remodeling, tissue stiffening, and cardiac dysfunction, contributing to the progression of heart failure, arrhythmia, and sudden cardiac death. Despite its high prevalence, there is a lack of effective and safe therapies that specifically target myofibroblasts to inhibit or even reverse pathological cardiac fibrosis. In the past few decades, cell therapy has been under continuous evaluation as a potential treatment strategy, and several studies have shown that transplantation of mesenchymal stromal cells (MSCs) can reduce cardiac fibrosis and improve heart function. Mechanistically, it is believed that the heart benefits from MSC therapy by stimulating innate anti-fibrotic and regenerative reactions. The mechanisms of action include paracrine signaling and cell-to-cell interactions. In this review, we provide an overview of the anti-fibrotic properties of MSCs and approaches to enhance them and discuss future directions of MSCs for the treatment of cardiac fibrosis.
Collapse
|
10
|
Efficacy and Mode of Action of Mesenchymal Stem Cells in Non-Ischemic Dilated Cardiomyopathy: A Systematic Review. Biomedicines 2020; 8:biomedicines8120570. [PMID: 33291410 PMCID: PMC7762005 DOI: 10.3390/biomedicines8120570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy (NIDCM) constitutes one of the most common causes to non-ischemic heart failure. Despite treatment, the disease often progresses, causing severe morbidity and mortality, making novel treatment strategies necessary. Due to the regenerative actions of mesenchymal stem cells (MSCs), they have been proposed as a treatment for NIDCM. This systematic review aims to evaluate efficacy and mode of action (MoA) of MSC-based therapies in NIDCM. A systematic literature search was conducted in Medline (Pubmed) and Embase. A total of 27 studies were included (3 clinical trials and 24 preclinical studies). MSCs from different tissues and routes of delivery were reported, with bone marrow-derived MSCs and direct intramyocardial injections being the most frequent. All included clinical trials and 22 preclinical trials reported an improvement in cardiac function following MSC treatment. Furthermore, preclinical studies demonstrated alterations in tissue structure, gene, and protein expression patterns, primarily related to fibrosis and angiogenesis. Consequently, MSC treatment can improve cardiac function in NIDCM patients. The MoA underlying this effect involves anti-fibrosis, angiogenesis, immunomodulation, and anti-apoptosis, though these processes seem to be interdependent. These encouraging results calls for larger confirmatory clinical studies, as well as preclinical studies utilizing unbiased investigation of the potential MoA.
Collapse
|
11
|
Sabbah HN, Zhang K, Gupta RC, Xu J, Singh-Gupta V. Effects of Angiotensin-Neprilysin Inhibition in Canines with Experimentally Induced Cardiorenal Syndrome. J Card Fail 2020; 26:987-997. [PMID: 32841710 PMCID: PMC7704862 DOI: 10.1016/j.cardfail.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sacubitril/valsartan (Sac/Val), a combined angiotensin-II receptor blocker (Val) and neprilysin inhibitor (Sac) in a 1:1 molar ratio, was shown to decrease the risk of cardiovascular death or heart failure (HF) hospitalization in patients with HF and reduced left ventricular (LV) ejection fraction. This study examined the effects of Sac/Val on LV structure, function, and bioenergetics, and on biomarkers of kidney injury and kidney function in dogs with experimental cardiorenal syndrome. METHODS AND RESULTS Fourteen dogs with cardiorenal syndrome (coronary microembolization-induced HF and renal dysfunction) were randomized to 3 months Sac/Val therapy (100 mg once daily, n = 7) or no therapy (control, n = 7). LV ejection fraction and troponin-I, as well as biomarkers of kidney injury/function including serum creatinine and urinary kidney injury molecule-1 were measured before and at end of therapy and the change (treatment effect change) calculated. Mitochondrial function measures, including the maximum rate of adenosine triphosphate synthesis, were measured in isolated cardiomyocytes at end of therapy. In Sac/Val dogs, the change in ejection fraction increased compared with controls, 6.9 ± 1.4 vs 0.7 ± 0.6%, P < .002, whereas change in troponin I decreased, -0.16 ± 0.03 vs -0.03 ± 0.02 ng/mL, P < .001. Urinary change in kidney injury molecule 1 decreased in Sac/Val-treated dogs compared with controls, -17.2 ± 7.9 vs 7.7 ± 3.0 mg/mL, P < .007, whereas the change in serum creatinine was not significantly different. Treatment with Sac/Val increased adenosine triphosphate synthesis compared with controls, 3240 ± 121 vs 986 ± 84 RLU/µg protein, P < .05. CONCLUSIONS In dogs with cardiorenal syndrome, Sac/Val improves LV systolic function, improves mitochondrial function and decreases biomarkers of heart and kidney injury. The results offer mechanistic insights into the benefits of Sac/Val in HF with compromised renal function.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan.
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Ramesh C Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jiang Xu
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
12
|
Deng J, Guo M, Li G, Xiao J. Gene therapy for cardiovascular diseases in China: basic research. Gene Ther 2020; 27:360-369. [PMID: 32341485 DOI: 10.1038/s41434-020-0148-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease has become a major disease affecting health in the whole world. Gene therapy, delivering foreign normal genes into target cells to repair damages caused by defects and abnormal genes, shows broad prospects in treating different kinds of cardiovascular diseases. China has achieved great progress of basic gene therapy researches and pathogenesis of cardiovascular diseases in recent years. This review will summarize the latest research about gene therapy of proteins, epigenetics, including noncoding RNAs and genome-editing technology in myocardial infarction, cardiac ischemia-reperfusion injury, atherosclerosis, muscle atrophy, and so on in China. We wish to highlight some important findings about the essential roles of basic gene therapy in this field, which might be helpful for searching potential therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Jiali Deng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Mengying Guo
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts, General Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Haider KH, Aramini B. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 2020; 11:23. [PMID: 31918755 PMCID: PMC6953131 DOI: 10.1186/s13287-019-1548-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have successfully progressed to phase III clinical trials successive to an intensive in vitro and pre-clinical assessment in experimental animal models of ischemic myocardial injury. With scanty evidence regarding their cardiogenic differentiation in the recipient patients' hearts post-engraftment, paracrine secretion of bioactive molecules is being accepted as the most probable underlying mechanism to interpret the beneficial effects of cell therapy. Secretion of small non-coding microRNA (miR) constitutes an integral part of the paracrine activity of stem cells, and there is emerging interest in miRs' delivery to the heart as part of cell-free therapy to exploit their integral role in various cellular processes. MSCs also release membrane vesicles of diverse sizes loaded with a wide array of miRs as part of their paracrine secretions primarily for intercellular communication and to shuttle genetic material. Exosomes can also be loaded with miRs of interest for delivery to the organs of interest including the heart, and hence, exosome-based cell-free therapy is being assessed for cell-free therapy as an alternative to cell-based therapy. This review of literature provides an update on cell-free therapy with primary focus on exosomes derived from BM-derived MSCs for myocardial repair.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Sulaiman Alrajhi University, Al-Qaseem, Kingdom of Saudi Arabia
- Department of Basic Sciences, Sulaiman Alrajhi University, PO Box 777, Al Bukairiyah, 51941 Kingdom of Saudi Arabia
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatr Res 2020; 87:265-276. [PMID: 31086355 PMCID: PMC6854309 DOI: 10.1038/s41390-019-0425-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21st century.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, MO, USA
| | - Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
15
|
Voors AA, Kremer D, Geven C, ter Maaten JM, Struck J, Bergmann A, Pickkers P, Metra M, Mebazaa A, Düngen H, Butler J. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur J Heart Fail 2019; 21:163-171. [PMID: 30592365 PMCID: PMC6607488 DOI: 10.1002/ejhf.1366] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Adrenomedullin (ADM) is a peptide hormone first discovered in 1993 in pheochromocytoma. It is synthesized by endothelial and vascular smooth muscle cells and diffuses freely between blood and interstitium. Excretion of ADM is stimulated by volume overload to maintain endothelial barrier function. Disruption of the ADM system therefore results in vascular leakage and systemic and pulmonary oedema. In addition, ADM inhibits the renin-angiotensin-aldosterone system. ADM is strongly elevated in patients with sepsis and in patients with acute heart failure. Since hallmarks of both conditions are vascular leakage and tissue oedema, we hypothesize that ADM plays a compensatory role and may exert protective properties against fluid overload and tissue congestion. Recently, a new immunoassay that specifically measures the biologically active ADM (bio-ADM) has been developed, and might become a biomarker for tissue congestion. As a consequence, measurement of bio-ADM might potentially be used to guide diuretic therapy in patients with heart failure. In addition, ADM might be used to guide treatment of (pulmonary) oedema or even become a target for therapy. Adrecizumab is a humanized, monoclonal, non-neutralizing ADM-binding antibody with a half-life of 15 days. Adrecizumab binds at the N-terminal epitope of ADM, leaving the C-terminal side intact to bind to its receptor. Due to its high molecular weight, the antibody adrecizumab cannot cross the endothelial barrier and consequently remains in the circulation. The observation that adrecizumab increases plasma concentrations of ADM indicates that ADM-binding by adrecizumab is able to drain ADM from the interstitium into the circulation. We therefore hypothesize that administration of adrecizumab improves vascular integrity, leading to improvement of tissue congestion and thereby may improve clinical outcomes in patients with acute decompensated heart failure. A phase II study with adrecizumab in patients with sepsis is ongoing and a phase II study on the effects of adrecizumab in patients with acute decompensated heart failure with elevated ADM is currently in preparation.
Collapse
Affiliation(s)
- Adriaan A. Voors
- Department of CardiologyUniversity of GroningenGroningenThe Netherlands
| | - Daan Kremer
- Department of CardiologyUniversity of GroningenGroningenThe Netherlands
| | - Christopher Geven
- Department of Intensive Care Medicine, Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Joachim Struck
- Sphingotec GmbHHennigsdorfGermany
- Adrenomed AGHennigsdorfGermany
| | | | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthInstitute of Cardiology, University of BresciaBresciaItaly
| | - Alexandre Mebazaa
- APHP, Hôpitaux Universitaires Saint‐Louis Lariboisière; INI‐CRCTUniversity Paris DiderotParisFrance
| | - Hans‐Dirk Düngen
- Department of CardiologyCharité Universitätsmedizin, Campus Virchow‐KlinikumBerlinGermany
| | - Javed Butler
- Division of CardiologyStony Brook UniversityStony BrookNYUSA
| |
Collapse
|
16
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|