1
|
Iglesias-Corral D, García-Valles P, Arroyo-Garrapucho N, Bueno-Martínez E, Ruiz-Robles JM, Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. Chloroquine-induced DNA damage synergizes with DNA repair inhibitors causing cancer cell death. Front Oncol 2024; 14:1390518. [PMID: 38803536 PMCID: PMC11128598 DOI: 10.3389/fonc.2024.1390518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer is a global health problem accounting for nearly one in six deaths worldwide. Conventional treatments together with new therapies have increased survival to this devastating disease. However, the persistent challenges of treatment resistance and the limited therapeutic arsenal available for specific cancer types still make research in new therapeutic strategies an urgent need. Methods Chloroquine was tested in combination with different drugs (Panobinostat, KU-57788 and NU-7026) in 8 human-derived cancer cells lines (colorectal: HCT116 and HT29; breast: MDA-MB-231 and HCC1937; glioblastoma: A-172 and LN-18; head and neck: CAL-33 and 32816). Drug´s effect on proliferation was tested by MTT assays and cell death was assessed by Anexin V-PI apoptosis assays. The presence of DNA double-strand breaks was analyzed by phospho-H2AX fluorescent staining. To measure homologous recombination efficiency the HR-GFP reporter was used, which allows flow cytometry-based detection of HR stimulated by I-SceI endonuclease-induced DSBs. Results The combination of chloroquine with any of the drugs employed displayed potent synergistic effects on apoptosis induction, with particularly pronounced efficacy observed in glioblastoma and head and neck cancer cell lines. We found that chloroquine produced DNA double strand breaks that depended on reactive oxygen species formation, whereas Panobinostat inhibited DNA double-strand breaks repair by homologous recombination. Cell death caused by chloroquine/Panobinostat combination were significantly reduced by N-Acetylcysteine, a reactive oxygen species scavenger, underscoring the pivotal role of DSB generation in CQ/LBH-induced lethality. Based on these data, we also explored the combination of CQ with KU-57788 and NU-7026, two inhibitors of the other main DSB repair pathway, nonhomologous end joining (NHEJ), and again synergistic effects on apoptosis induction were observed. Conclusion Our data provide a rationale for the clinical investigation of CQ in combination with DSB inhibitors for the treatment of different solid tumors.
Collapse
Affiliation(s)
- Diego Iglesias-Corral
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Paula García-Valles
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Nuria Arroyo-Garrapucho
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Elena Bueno-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Juan Manuel Ruiz-Robles
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
2
|
Chowdhury SG, Karmakar P. Revealing the role of epigenetic and post-translational modulations of autophagy proteins in the regulation of autophagy and cancer: a therapeutic approach. Mol Biol Rep 2023; 51:3. [PMID: 38063905 DOI: 10.1007/s11033-023-08961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Autophagy is a process that is characterized by the destruction of redundant components and the removal of dysfunctional ones to maintain cellular homeostasis. Autophagy dysregulation has been linked to various illnesses, such as neurodegenerative disorders and cancer. The precise transcription of the genes involved in autophagy is regulated by a network of epigenetic factors. This includes histone modifications and histone-modifying enzymes. Epigenetics is a broad category of heritable, reversible changes in gene expression that do not include changes to DNA sequences, such as chromatin remodeling, histone modifications, and DNA methylation. In addition to affecting the genes that are involved in autophagy, the epigenetic machinery can also alter the signals that control this process. In cancer, autophagy plays a dual role by preventing the development of tumors on one hand and this process may suppress tumor progression. This may be the control of an oncogene that prevents autophagy while, conversely, tumor suppression may promote it. The development of new therapeutic strategies for autophagy-related disorders could be initiated by gaining a deeper understanding of its intricate regulatory framework. There is evidence showing that certain machineries and regulators of autophagy are affected by post-translational and epigenetic modifications, which can lead to alterations in the levels of autophagy and these changes can then trigger disease or affect the therapeutic efficacy of drugs. The goal of this review is to identify the regulatory pathways associated with post-translational and epigenetic modifications of different proteins in autophagy which may be the therapeutic targets shortly.
Collapse
Affiliation(s)
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Yenigül M, Gencer
Akçok EB. Histone Deacetylase Inhibition and Autophagy Modulation Induces a Synergistic Antiproliferative Effect and Cell Death in Cholangiocarcinoma Cells. ACS OMEGA 2023; 8:21755-21768. [PMID: 37360445 PMCID: PMC10285991 DOI: 10.1021/acsomega.3c01317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Cholangiocarcinoma, also known as biliary tract cancer, is an aggressive adenocarcinoma arising from epithelial cells lining the intra- and extrahepatic biliary system. The effects of autophagy modulators and histone deacetylase (HDAC) inhibitors in cholangiocarcinoma are not fully known. It is essential to understand the molecular mechanisms and the effects of HDAC inhibitors in the context of cholangiocarcinoma. The antiproliferative effect of different HDAC inhibitors and autophagy modulation was investigated by the MTT cell viability assay in TFK-1 and EGI-1 cholangiocarcinoma cell lines. Combination indexes were calculated using CompuSyn software. Consequently, apoptosis was detected by Annexin V/PI staining. The effect of the drugs on the cell cycle was measured by the propidium iodide staining. The HDAC inhibition was confirmed via acetylated histone protein levels by western blotting. HDAC inhibitors, MS-275 and romidepsin, showed a better synergistic effect with the nocodazole combination. The combination treatment exerted its growth inhibitory effect by cell cycle arrest and induction of apoptosis. The cell cycle analysis of the combination treatment showed that the S phase and G2/M phase were achieved. Moreover, the necrotic and apoptotic cell population increased after single HDAC inhibitors and combination treatment. The anti-cancer effect of HDAC inhibitors is revealed by acetylation levels of histones. While acetylation levels were increased in response to HDAC inhibitors and autophagy modulator combinations, the HDAC expression decreased. This study highlights the importance of the combination of HDAC inhibition and autophagy modulators and demonstrates a synergistic effect, which could be a promising therapy and novel treatment approach for cholangiocarcinoma.
Collapse
Affiliation(s)
- Münevver Yenigül
- Graduate
School of Engineering and Science, Bioengineering Department, Abdullah Gul University, Kayseri 38080, Turkey
| | - Emel Başak Gencer
Akçok
- Faculty
of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
4
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
5
|
Chloroquine-Induced DNA Damage Synergizes with Nonhomologous End Joining Inhibition to Cause Ovarian Cancer Cell Cytotoxicity. Int J Mol Sci 2022; 23:ijms23147518. [PMID: 35886866 PMCID: PMC9323666 DOI: 10.3390/ijms23147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy; therefore, more effective treatments are urgently needed. We recently reported that chloroquine (CQ) increased reactive oxygen species (ROS) in OC cell lines (OCCLs), causing DNA double-strand breaks (DSBs). Here, we analyzed whether these lesions are repaired by nonhomologous end joining (NHEJ), one of the main pathways involved in DSB repair, and if the combination of CQ with NHEJ inhibitors (NHEJi) could be effective against OC. We found that NHEJ inhibition increased the persistence of γH2AX foci after CQ-induced DNA damage, revealing an essential role of this pathway in the repair of the lesions. NHEJi decreased the proliferation of OCCLs and a strong in vitro synergistic effect on apoptosis induction was observed when combined with CQ. This effect was largely abolished by the antioxidant N-Acetyl-L-cysteine, revealing the critical role of ROS and DSB generation in CQ/NHEJi-induced lethality. We also found that the NHEJ efficiency in OCCLs was not affected by treatment with Panobinostat, a pan-histone deacetylase inhibitor that also synergizes with CQ in OCCLs by impairing homologous recombination. Accordingly, the triple combination of CQ-NHEJi-Panobinostat exerted a stronger in vitro synergistic effect. Altogether, our data suggest that the combination of these drugs could represent new therapeutic strategies against OC.
Collapse
|
6
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
7
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. Synergistic effect of Chloroquine and Panobinostat in ovarian cancer through induction of DNA damage and inhibition of DNA repair. Neoplasia 2021; 23:515-528. [PMID: 33930758 PMCID: PMC8100353 DOI: 10.1016/j.neo.2021.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022]
Abstract
Ovarian cancer (OC) is the deadliest gynecologic malignancy, which is mainly due to late-stage diagnosis and chemotherapy resistance. Therefore, new and more effective treatments are urgently needed. The in vitro effects of Panobinostat (LBH), a histone deacetylase inhibitor that exerts pleiotropic antitumor effects but induces autophagy, in combination with Chloroquine (CQ), an autophagy inhibitor that avoid this cell survival mechanism, were evaluated in 4 OC cell lines. LBH and CQ inhibited ovarian cancer cell proliferation and induced apoptosis, and a strong synergistic effect was observed when combined. Deeping into their mechanisms of action we show that, in addition to autophagy modulation, treatment with CQ increased reactive oxygen species (ROS) causing DNA double strand breaks (DSBs), whereas LBH inhibited their repair by avoiding the correct recruitment of the recombinase Rad51 to DSBs. Interestingly, CQ-induced DSBs and cell death caused by CQ/LBH combination were largely abolished by the ROS scavenger N-Acetylcysteine, revealing the critical role of DSB generation in CQ/LBH-induced lethality. This role was also manifested by the synergy found when we combined CQ with Mirin, a well-known homologous recombination repair inhibitor. Altogether, our results provide a rationale for the clinical investigation of CQ/LBH combination in ovarian cancer.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain; Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain; Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain.
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain; Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain.
| |
Collapse
|
8
|
Zhou W, Wang H, Yang Y, Chen ZS, Zou C, Zhang J. Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 2020; 25:S1359-6446(20)30367-6. [PMID: 32947043 PMCID: PMC7492153 DOI: 10.1016/j.drudis.2020.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Quinoline (QN) derivatives are often used for the prophylaxis and treatment of malaria. Chloroquine (CQ), a protonated, weakly basic drug, exerts its antimalarial effect mainly by increasing pH and accumulating in the food vacuole of the parasites. Repurposing CQ is an emerging strategy for new indications. Given the inhibition of autophagy and its immunomodulatory action, CQ shows positive efficacy against cancer and viral diseases, including Coronavirus 2019 (COVID-19). Here, we review the underlying mechanisms behind the antimalarial, anticancer and antiviral effects of CQ. We also discuss the clinical evidence for the use of CQ and hydroxychloroquine (HCQ) against COVID-19.
Collapse
Affiliation(s)
- Wenmin Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA.
| | - Chang Zou
- The Second Clinical Medical College of Jinan University, Shenzhen, 518020, PR China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
9
|
Muniraj N, Siddharth S, Shriver M, Nagalingam A, Parida S, Woo J, Elsey J, Gabrielson K, Gabrielson E, Arbiser JL, Saxena NK, Sharma D. Induction of STK11-dependent cytoprotective autophagy in breast cancer cells upon honokiol treatment. Cell Death Discov 2020; 6:81. [PMID: 32963809 PMCID: PMC7475061 DOI: 10.1038/s41420-020-00315-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells hijack autophagy pathway to evade anti-cancer therapeutics. Many molecular signaling pathways associated with drug-resistance converge on autophagy induction. Honokiol (HNK), a natural phenolic compound purified from Magnolia grandiflora, has recently been shown to impede breast tumorigenesis and, in the present study, we investigated whether breast cancer cells evoke autophagy to modulate therapeutic efficacy and functional networks of HNK. Indeed, breast cancer cells exhibit increased autophagosomes-accumulation, MAP1LC3B-II/LC3B-II-conversion, expression of ATG proteins as well as elevated fusion of autophagosomes and lysosomes upon HNK treatment. Breast cancer cells treated with HNK demonstrate significant growth inhibition and apoptotic induction, and these biological processes are blunted by macroautophagy/autophagy. Consequently, inhibiting autophagosome formation, abrogating autophagosome-lysosome fusion or genetic-knockout of BECN1 and ATG7 effectively increase HNK-mediated apoptotic induction and growth inhibition. Next, we explored the functional impact of tumor suppressor STK11 in autophagy induction in HNK-treated cells. STK11-silencing abrogates LC3B-II-conversion, and blocks autophagosome/lysosome fusion and lysosomal activity as illustrated by LC3B-Rab7 co-staining and DQ-BSA assay. Our results exemplify the cytoprotective nature of autophagy invoked in HNK-treated breast cancer cells and put forth the notion that a combined strategy of autophagy inhibition with HNK would be more effective. Indeed, HNK and chloroquine (CQ) show synergistic inhibition of breast cancer cells and HNK-CQ combination treatment effectively inhibits breast tumorigenesis and metastatic progression. Tumor-dissociated cells from HNK-CQ treated tumors exhibit abrogated invasion and migration potential. Together, these results implicate that breast cancer cells undergo cytoprotective autophagy to circumvent HNK and a combined treatment with HNK and CQ can be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Nethaji Muniraj
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Sumit Siddharth
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Marey Shriver
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Arumugam Nagalingam
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Juhyung Woo
- Department of Pathology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Justin Elsey
- Department of Dermatology, Emory School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA 30322 USA
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Edward Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
- Department of Pathology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Jack L. Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA 30322 USA
| | - Neeraj K. Saxena
- Early Detection Research Group, National Cancer Institute, Rockville, MD USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| |
Collapse
|