1
|
Tang J, Liu Y, Wu Y, Li S, Zhang D, Wang H, Wang W, Song X, Li Y. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res 2024; 47:757-792. [PMID: 39549164 DOI: 10.1007/s12272-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is a downstream protein from the pattern recognition receptor family that forms the NLRP3 inflammasome. The NLRP3 inflammasome releases caspase-1, IL-1β, and IL-18, contributing to inflammatory responses associated with diabetes mellitus, arthritis, and ischemia-reperfusion injury. Recent studies suggest that specific saponin monomers and extracts from traditional Chinese medicines can inhibit inflammatory responses and related pathways, including the production of inflammatory factors. MCC950 is one of the most influential and specific NLRP3 inhibitors. Comparative molecular docking studies have identified 22 of the 37 saponin components as more robust binders to NLRP3 than MCC950. Dioscin, polyphyllin H, and saikosaponin-a have the highest binding affinities and potential NLRP3 inhibitors, offering a theoretical basis for developing novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jiamei Tang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yaxiao Liu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Wu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shixing Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongdong Zhang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China
| | - Wei Wang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaomei Song
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yuze Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
2
|
Zhang K, Lin L, Zhu Y, Zhang N, Zhou M, Li Y. Saikosaponin d Alleviates Liver Fibrosis by Negatively Regulating the ROS/NLRP3 Inflammasome Through Activating the ERβ Pathway. Front Pharmacol 2022; 13:894981. [PMID: 35694250 PMCID: PMC9174603 DOI: 10.3389/fphar.2022.894981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Background and aims: Saikosaponin d (SSd) has a steroidal structure and significant anti-inflammatory effects. The purpose of this study was to explore the mechanism underlying SSd’s inhibitory effects on liver fibrosis. Methods: Wild-type and estrogen receptor knockout (ERKO) mice were treated with CCl4 to establish liver fibrosis mouse models. The effects of SSd on hepatic fibrogenesis were studied in these mouse models. Hepatic stellate cells (HSCs) were activated by H2O2 to investigate the potential molecular mechanisms. The establishment of the models and the degrees of inflammation and liver tissue fibrosis were evaluated by detecting changes in serum liver enzymes and liver histopathology. The expression of α-SMA and TGF-β1 was determined by immunohistochemistry. The expression and significance of NLRP3 inflammasome proteins were explored by RT-PCR and Western blotting analyses. The mitochondrial ROS-related indexes were evaluated by MitoSOX Red. Results: In wild-type and ERKO mice treated with CCl4, the fluorescence expression of mitochondrial ROS was up-regulated, while the mitochondrial membrane potential and ATP content were decreased, suggesting that the mitochondria were damaged. In addition, the expression of NLRP3 inflammatory bodies and fibrosis markers (α-SMA, TGF-β, TIMP-1, MMP-2, and Vimentin) in liver tissue increased. Furthermore, the above indexes showed the same expression trend in activated HSCs. In addition, the peripheral serum ALT and AST levels increased in CCl4-induced liver injury model mice. And HE staining showed a large number of inflammatory cell infiltration in the liver of model mice. Picric acid-Sirius staining and Masson staining showed that there was significant collagen fibrous tissue deposition in mice liver sections. IHC and WB detection confirmed that the expression of α-SMA and TGF-β1 increased. Liver fibrosis scores were also elevated. Then, after SSd intervention, the expression of ROS in wild-type mice and αERKO mice decreased, mitochondrial membrane potential recovered, ATP level increased, NLRP3 inflammasome and fibrosis indexes decreased, liver enzyme levels decreased, and liver pathology showed liver inflammation. The damage and collagen deposition were significantly relieved, the expression of α-SMA and TGF-β1 was decreased, and the fibrosis score was also decreased. More importantly, the effect of SSd in alleviating liver injury and liver fibrosis had no effect on βERKO mice. Conclusion: SSd alleviated liver fibrosis by negatively regulating the ROS/NLRP3 inflammasome through activating the ERβ pathway. By establishing liver fibrosis models using wild-type and ERKO mice, we demonstrated that SSd could alleviate liver fibrosis by inhibiting the ROS/NLRP3 inflammasome axis through activating the ERβ pathway.
Collapse
|
3
|
Saikosaponin-D Mitigates Oxidation in SH-SY5Y Cells Stimulated by Glutamate Through Activation of Nrf2 Pathway: Involvement of PI3K. Neurotox Res 2022; 40:230-240. [PMID: 34994954 DOI: 10.1007/s12640-021-00438-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a typical neurodegenerative disease. Well-established studies have shown an elevated level of ROS (reactive oxygen species) that induces oxidative stress in AD. Saikosaponin-D exhibited significant therapeutic effects on neurodegenerative diseases. However, its in-depth molecular mechanisms against neurotoxicity remain not fully uncovered. Herein, the possible protective effects of saikosaponin-D on glutamate-induced neurotoxicity in SH-SY5Y cells and the underlying mechanism were elucidated. Saikosaponin-D pretreatment could ameliorate glutamate-induced cytotoxicity according to MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and depress apoptosis according to Hoechst 33,342 staining and Annexin V-FITC/PI double staining in SH-SY5Y cells. Additionally, saikosaponin-D administration suppressed oxidative stress in response to glutamate indicated by diminished intracellular ROS formation and reduced MDA (malondialdehyde) content in SH-SY5Y cells. These phenomena, appeared to correlate with the recovered cellular antioxidant enzyme activities and inducted HO-1 (heme oxygenase-1) expression accompanying the nuclear translocation of Nrf2 conduct by saikosaponin-D preconditioning which had been altered by glutamate, were correlated with its neuroprotective. Furthermore, addition of LY294002, a selective inhibitor of PI3K (phosphatidylinositol 3 kinase), blocked saikosaponin-D-caused Nrf2 nuclear translocation and reversed the protection of saikosaponin-D against glutamate in SH-SY5Y cells. Moreover, saikosaponin-D exhibited antioxidant potential with high free radical-scavenging activity as confirmed by a DPPH (2,2-diphenyl-1-picrylhydrazyl) and TEAC (Trolox equivalent antioxidant capacity) in a cell-free system in vitro. Taken together, our results indicated that saikosaponin-D enhanced cellular antioxidant capacity through not only intrinsic free radical-scavenging activity but also induction of endogenous antioxidant enzyme activities and HO-1 expression mediated, at least in part, by activating PI3K and subsequently Nrf2 nuclear translocation, thereby protecting the SH-SY5Y cells from glutamate-induced oxidative cytotoxicity. In concert, these data raise the possibility that saikosaponin-D may be an attractive candidate for prevention and treatment of AD and other diseases related to oxidation in the future.
Collapse
|
4
|
Chen Y, Que R, Zhang N, Lin L, Zhou M, Li Y. Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling. Mol Biol Rep 2021; 48:7853-7863. [PMID: 34714484 PMCID: PMC8604865 DOI: 10.1007/s11033-021-06807-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hepatic fibrosis is the final pathway of chronic liver disease characterized by excessive accumulation of extracellular matrix (ECM), which eventually develop into cirrhosis and liver cancer. Emerging studies demonstrated that Saikosaponin-d (SSd) exhibits a protective role in liver fibrosis. However, the mechanism underlying anti-liver fibrosis of SSd in vivo and in vitro remains unclear. METHODS AND RESULTS Transforming growth factor (TGF)-β and carbon tetrachloride (CCl4) were used for creating liver fibrosis model in vitro and in vivo, respectively. The role of SSd in regulating liver fibrosis was assessed through Sirius red and Masson staining, and IHC assay. We found that SSd attenuated remarkably CCl4-induced liver fibrosis as evidenced by decreased collagen level, and decreased expression of fibrotic markers Col 1 and α-SMA. Meanwhile, SSd repressed autophagy activation as suggested by decreased BECN1 expression and increased p62 expression. Compared with HSCs from CCl4-treated group, the primary HSCs from SSd-treated mice exhibited a marked inactivation of autophagy. Mechanistically, SSd treatment enhanced the expression of GPER1 in primary HSCs and in TGF-β-treated LX-2 cells. GPER1 agonist G1 repressed autophagy activation, whereas GPER1 antagonist G15 activated autophagy and G15 also damaged the function of SSd on suppressing autophagy, leading to subsequent increased levels of fibrotic marker level in LX-2 cells. CONCLUSIONS Our findings highlight that SSd alleviates hepatic fibrosis by regulating GPER1/autophagy pathway.
Collapse
Affiliation(s)
- Yirong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Zhijiang Road, Shanghai, 200071, China
| | - Renye Que
- Department of Gastroenterology, Shanghai TCM Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Na Zhang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Zhijiang Road, Shanghai, 200071, China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Zhijiang Road, Shanghai, 200071, China
| | - Mengen Zhou
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Zhijiang Road, Shanghai, 200071, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Zhijiang Road, Shanghai, 200071, China.
| |
Collapse
|
5
|
Lin L, Zhou M, Que R, Chen Y, Liu X, Zhang K, Shi Z, Li Y. Saikosaponin-d protects against liver fibrosis by regulating Estrogen receptor-β/NLRP3 inflammasome pathway. Biochem Cell Biol 2021; 99:666-674. [PMID: 33974808 DOI: 10.1139/bcb-2020-0561] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Liver fibrosis is the ultimate common pathway in most types of chronic liver damage characterized by imbalance of extracellular matrix degradation and synthesis. Saikosaponin-d (SSd) possesses anti-inflammatory and anti-liver fibrosis effects. However, the underlying mechanism of SSd in repressing hepatic stellate cells (HSCs) activation remains unclear. Here we found that SSd alleviated remarkably carbon tetrachloride (CCl4)-induced liver fibrosis, as evidenced by decreased collagen level and profibrotic markers (COl1a1 and α-smooth muscle actin (SMA)) expression. SSd repressed CCl4-induced NOD-like receptor family pyrin-domain-containng-3 (NLRP3) activation in fibrotic livers, as suggested by decreased level of NLRP3, IL-18, and IL-β. The primary HSCs of CCl4 mice exhibited a significant increase in profibrotic markers expression and NLRP3 activation, but SSd treatment reversed the effect. SSd also repressed TGF-β-induced profibrotic markers expression and NLRP3 activation in vitro. Mechanistically, TGF-β decreased the expression of Estrogen receptor-β (ERβ) in HSCs, whereas SSd treatment reversed the effect. ERβ inhibition enhanced NLRP3 activation in HSCs. More important, ERβ or NLRP3 inhibition destroyed partially the function of SSd on anti-liver fibrosis. In summary, the current data suggest that SSd prevents hepatic fibrosis through regulating ERβ/NLRP3 inflammasome pathway, and suggest SSd as a potential agent for treating liver fibrosis.
Collapse
Affiliation(s)
- Liubing Lin
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Mengen Zhou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Renye Que
- Shanghai TCM Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Yirong Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Xiaolin Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Zhe Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, 274 Middle Zhijiang Road, Jing 'an District, Shanghai, Shanghai, China, 200071;
| |
Collapse
|
6
|
Wang X, Yang G. Saikosaponin A attenuates neural injury caused by ischemia/reperfusion. Transl Neurosci 2020; 11:227-235. [PMID: 33335763 PMCID: PMC7712316 DOI: 10.1515/tnsci-2020-0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023] Open
Abstract
Background Inflammation is involved in cerebral ischemia/reperfusion (I/R)-induced neurological damage. Saikosaponin A (SSa), extracted from Radix bupleuri, has been reported to exert anti-inflammatory effects. This article aimed to investigate whether SSa could ameliorate neuroinflammation mediated by ischemic stroke and the underlying mechanism. Methods Rat middle cerebral artery occlusion (MCAO) model was employed in this study, and the cognitive and motor functions were detected by behavioral tests. Inflammatory cytokines in the serum were detected by ELISA kits. The expression levels of Toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), and high-mobility group box 1 (HMGB1) in the brain tissues were assayed with Western blot. Results Our results showed that SSa pretreatment could significantly reduce brain damage, improve neurological function recovery, and decrease the water content of brain tissues when compared with the model group. SSa pretreatment significantly reduced the serum HMGB1 level and downregulated the contents of inflammatory cytokines including tumor necrosis factor-α, interleukin-1 beta, and interleukin-6. Furthermore, SSa pretreatment could attenuate the decreased TLR4 and nucleus NF-κB in the brain of MCAO rats. The protein level of HMGB1 in the nucleus was significantly upregulated in the SSa pretreatment group. Conclusion Our results suggested that the pretreatment with SSa provided significant protection against cerebral I/R injury in rats via its anti-inflammation property by inhibiting the nucleus HMGB1 release.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Neurology, Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China; Department of Neurology, Harrison International Peace Hospital, No.180, East Renmin Road, Hengshui 053000, Hebei, China
| | - Guofeng Yang
- Department of Geriatrics, Second Hospital of Hebei Medical University, No. 215, West Heping Road, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
7
|
Chen S, Li M, Jiang W, Zheng H, Qi LW, Jiang S. The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:823. [PMID: 32793668 PMCID: PMC7396229 DOI: 10.21037/atm-19-3850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Pharmacological induction of autophagy can protect against acetaminophen (APAP) induced acute liver failure (ALF) by removing APAP adducts (APAP-AD), but its mechanism is not well understood. Hepatoprotective effect of saponins from traditional Chinese medicine has attracted widespread attention from all over the world. The content of saponins in Lonicerae Flos (Shanyinhua in Chinese) is up to 15–25%. Dipsacoside B (DB) is a common bioactive ingredient of different Shanyinhua, but its hepatoprotective effect and mechanism are still unknown. The present investigation aimed to study the benefit of DB in APAP-induced hepatotoxicity mouse model and different cell model. Methods Mice were treated with DB by intraperitoneal injection 1 h before treated with 500 mg/kg APAP, which caused ALF after 4 h. HepG2 cells were treated with DB for 1 h before treated with 10 mM APAP for 12 h. Hepatotoxicity was assessed via ALT and AST. Neuraminidase 1 (Neu1), lysosomal autophagy marker LC3 and P62 were examined by western blot. Neu1 activity was assayed using its substrate 2-(4-methylumbelliferyl)-D-N-acetylneuraminic acid. Apoptosis level was examined by TUNEL and caspase 3 activity. Molecular docking was used to predict the interaction between DB and protein Neu1. Results Our results demonstrated that pretreatment with 0.5 μM DB (in vitro) and 50 mg/kg DB (in vivo) respectively reversed increased level of AST and ALT induced by APAP. Histopathological examinations showed reduced necrosis and apoptosis in the liver of DB-treated APAP mice. DB promoted the removal of APAP-AD by lysosomal autophagy. These effects were associated with significant decrease in the level of Neuraminidase 1 (Neu1), a negative regulator of lysosomal exocytosis. Molecular docking results showed that DB could bind to Neu1 protein (binding energy =−7.86 kcal/mol). Akt/mTOR-mediated autophagy and inhibition of apoptosis may be the main mechanisms for the hepatoprotective effects of DB in acetaminophen-induced liver injury. Conclusions These data indicate that DB alleviated hepatotoxicity caused by APAP at least in part via Neu1 inhibition, Akt/mTOR pathway is involved in the detoxification effect of DB on acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174' and 2*3*8=6*8 and 'hgwn'='hgwn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
9
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174%' and 2*3*8=6*8 and 'alnw'!='alnw%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|
10
|
A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018. [PMID: 30466994 DOI: 10.1016/j.phymed.2018.09.174" and 2*3*8=6*8 and "mze9"="mze9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radix Bupleuri (RB) has been widely used in Chinese Traditional Medicine for over 2000 years and is currently marketed in China as Chai-Hu-Shu-Gan tablets and Xiao-Yao-Wan tablets. Saikosaponins (SSs, especially SSa, SSc and SSd), as the major bioactive compounds in RB, represent anti-inflammatory, anti-tumor, anti-oxidant, anti-viral and hepatoprotective effects. PURPOSE To summarize recent findings regarding to the extraction, detection, biosynthesis, metabolism, pharmacological/toxicological effects of SSs. METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Saikosaponin", "Radix Bupleuri", "Bupleurum" and combinations to include published studies of SSs primarily from 2003 to 2018. Several critical previous studies beyond this period were also included. RESULTS 354 papers were found and 165 papers were reviewed. SSs have drawn great attention for their anti-inflammation, anti-viral and anti-cancer effects and contradictory roles in the regulation of cell apoptosis, oxidative stress and liver fibrosis. Meanwhile, increased risks of overdose-induced acute or accumulation-related chronic hepatotoxicity of SSs and RB have also been reported. However, underlying mechanisms of SSs bioactivities, the metabolism of SSs and bioactivities of SSs metabolites are largely unknown. CONCLUSION This comprehensive review of SSs provides novel insights and perspectives on the limitations of current studies and the importance of metabolism study and the dose-pharmacological/toxic relationship of SSs for the future discovery of SSs-based therapeutic strategies and clinical safe practice.
Collapse
|