1
|
Eskandarion MR, Eskandarieh S, Shakoori Farahani A, Mahmoodzadeh H, Shahi F, Oghabian MA, Shirkoohi R. Prediction of novel biomarkers for gastric intestinal metaplasia and gastric adenocarcinoma using bioinformatics analysis. Heliyon 2024; 10:e30253. [PMID: 38737262 PMCID: PMC11088262 DOI: 10.1016/j.heliyon.2024.e30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Background & aim The histologic and molecular changes from intestinal metaplasia (IM) to gastric cancer (GC) have not been fully characterized. The present study sought to identify potential alterations in signaling pathways in IM and GC to predict disease progression; these alterations can be considered therapeutic targets. Materials & methods Seven gene expression profiles were selected from the GEO database. Discriminate differentially expressed genes (DEGs) were analyzed by EnrichR. The STRING database, Cytoscape, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, NetworkAnalyst, MirWalk database, OncomiR, and bipartite miRNA‒mRNA correlation network was used for downstream analyses of selected module genes. Results Analyses revealed that extracellular matrix-receptor interactions (ITGB1, COL1A1, COL1A2, COL4A1, FN1, COL6A3, and THBS2) in GC and PPAR signaling pathway interactions (FABP1, APOC3, APOA1, HMGCS2, and PPARA and PCK1) in IM may play key roles in both the carcinogenesis and progression of underlying GC from intestinal metaplasia. IM enrichment indicated that this is closely related to digestion and absorption. The TF-hub gene regulatory network revealed that AR, TCF4, SALL4, and ESR1 were more important for hub gene expression. It was revealed that the development and prediction of GC may be affected by hsa-miR-29. It was found that PTGR1, C1orf115, CRYL1, ALDOB, and SULT1B1 were downregulated in GC and upregulated in IM. Therefore, they might have tumor suppressor activity in GC progression. Conclusion New potential biomarkers and pathways involved in GC and IM were identified that are important for the transformation of GC from IM to adenocarcinoma and can be therapeutic targets for GC.
Collapse
Affiliation(s)
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori Farahani
- Medical Genetics Ward, IKHC Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shahi
- Department of Medical Oncology, Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Medical Physics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Darang E, Pezeshkian Z, Mirhoseini SZ, Ghovvati S. Bioinformatics and pathway enrichment analysis identified hub genes and potential biomarker for gastric cancer prognosis. Front Oncol 2023; 13:1187521. [PMID: 37361568 PMCID: PMC10288990 DOI: 10.3389/fonc.2023.1187521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Gastric cancer is one of the most common cancers in the world. This study aimed to identify genes, biomarkers, and metabolic pathways affecting gastric cancer using bioinformatic analysis and meta-analysis. Methods Datasets containing gene expression profiles of tumor lesions and adjacent non-tumor mucosa samples were downloaded. Common differentially expressed genes between data sets were selected to identify hub genes and further analysis. Gene Expression Profiling and Interactive Analyses (GEPIA) and the Kaplan-Meier method were used to further validate the expression level of genes and plot the overall survivalcurve, respectively. Results and disscussion KEGG pathway analysis showed that the most important pathway was enriched in ECM-receptor interaction. Hub genes includingCOL1A2, FN1, BGN, THBS2, COL5A2, COL6A3, SPARC and COL12A1 wereidentified. The top interactive miRNAs including miR-29a-3p, miR-101-3p,miR-183-5p, and miR-15a-5p targeted the most hub genes. The survival chart showed an increase in mortality in patients with gastric cancer, which shows the importance of the role of these genes in the development of the disease and can be considered candidate genes in the prevention and early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Elham Darang
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Zahra Pezeshkian
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
- Research and Development Center (R&D), BioGenTAC Inc., Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| |
Collapse
|
3
|
Yang S, Gao W, Wang H, Zhang X, Mi Y, Ding Y, Geng C, Zhang J, Cheng M, Li S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:58. [PMID: 36819548 PMCID: PMC9929765 DOI: 10.21037/atm-22-6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023]
Abstract
Background Breast cancer (BC) is the most frequently diagnosed cancer in women and the second most common cancer among newly diagnosed cancers worldwide. Studies have shown that paired box 2 (PAX2) participates in the tumorigenesis of some cancer cells, but its role in BC is still unclear. Methods Transcriptome expression profiles and clinicopathological information of BC were downloaded from The Cancer Genome Atlas (TCGA) database to explore the expression level and prognostic value of PAX2. Gene set enrichment analysis (GSEA) and functional enrichment analysis were performed to investigate the functions and pathways of PAX2. Moreover, real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to determine the expression of PAX2 in BC tissues, and the predictive value of PAX2 in clinical samples was assessed. Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell growth. The migration and invasive capacities of cells were assessed by wound healing assay and Transwell assay. Results PAX2 was upregulated in the TCGA-BC datasets. GSEA suggested that PAX2 may be involved in the regulation of signaling pathways such as MAPK. Moreover, PAX2 was overexpressed in BC tissues, and PAX2 expression was associated with tumor size and lymph node metastasis. PAX2 deficiency could promote the growth, migration, and invasion of BC cells. Conclusions Upregulation of PAX2 inhibited BC cell growth, migration, and invasion, making PAX2 a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Shan Yang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Gao
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoqi Wang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi Zhang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunzhe Mi
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yawen Ding
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuizhi Geng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Cheng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sainan Li
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Guo J, Zhao C, Zhang X, Wan Z, Chen T, Miao J, Cai J, Xie W, Chen H, Huang M, Zhao X, Wei W, Shen Q. A novel 8-gene panel for prediction of early biochemical recurrence in patients with prostate cancer after radical prostatectomy. Am J Cancer Res 2022; 12:3318-3332. [PMID: 35968320 PMCID: PMC9360249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Approximately 25% of prostate cancer (PCa) cases experience biochemical recurrence (BCR) following radical prostatectomy (RP). The patients with BCR, especially with BCR ≤2 year after RP (early BCR), are more likely to develop clinical metastasis and castration resistance. Now decision-making regarding BCR after RP relies solely on clinical parameters. We thus attempted to establish an early BCR-risk prediction model by combining a molecular signature with clinicopathological features for guiding clinical decision-making. In this study, an 8-gene signature was derived, and these eight genes were SPTBN2, LGI3, TGM3, LENG9, HAS3, SLC25A27, PCDHGA1, and ADPRHL1. The Kaplan-Meier analysis revealed a significantly prolonged BCR-free survival in the patients with low-risk scores compared to those with high-risk scores in both training and validation datasets. Harrell's concordance index and time-dependent receiver operating characteristic analysis demonstrated that this gene signature tended to outperform three commercial panels at early BCR prediction. Moreover, this signature was also proven as an independent predictor of BCR-free survival. A nomogram, incorporating the gene signature and clinicopathologic features, was constructed and excellently predicted 1-, 2- and 3-year BCR-free survival of localized PCa patients after RP. Gene set enrichment analysis, tumor immunity, and mRNA expression profiling analysis showed that the high-risk group was more prone to the immunosuppressive microenvironment and impaired DNA damage response than the low-risk group. Collectively, we successfully developed a novel 8-gene signature as a powerful predictor for early BCR after RP and created a prognostic nomogram, which may help inform the clinical management of PCa.
Collapse
Affiliation(s)
- Jinan Guo
- Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, The First Affiliated Hospital of South University of Science and Technology of ChinaShenzhen, China
- Shenzhen Urology Minimally Invasive Engineering CenterShenzhen, China
| | - Chenhui Zhao
- Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen key Laboratory of Kindey Diseases, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, The First Affiliated Hospital of South University of Science and Technology of ChinaShenzhen, China
| | - Zhong Wan
- Shuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | | | | | | | | | - Hao Chen
- 3D Medicines, IncShanghai, China
| | | | | | - Wei Wei
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of SciencesNingbo, China
| | - Qi Shen
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, The First Affiliated Hospital of South University of Science and Technology of ChinaShenzhen, China
| |
Collapse
|
5
|
Yang MH, Baek SH, Hwang ST, Um JY, Ahn KS. Corilagin exhibits differential anticancer effects through the modulation of STAT3/5 and MAPKs in human gastric cancer cells. Phytother Res 2022; 36:2449-2462. [PMID: 35234310 DOI: 10.1002/ptr.7419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
Corilagin (CLG) is a hydrolyzable tannin and possesses various pharmacological activities. Here, we investigated the impact of CLG as an anti-tumor agent against human gastric tumor cells. We observed that CLG could cause negative regulation of JAKs-Src-STAT3/5 signaling axis in SNU-1 cells, but did not affect these pathways in SNU-16 cells. Interestingly, CLG promoted the induction of mitogen-activated protein kinases (MAPKs) signaling pathways in only SNU-16 cells, but not in the SNU-1 cells. CLG exhibited apoptotic effects that caused an increased accumulation of the cells in sub-G1 phase and caspase-3 activation in both SNU-1 and SNU-16 cell lines. We also noticed that CLG and docetaxel co-treatment could exhibit significantly enhanced apoptotic effects against SNU-1 cells. Moreover, the combinations treatment of CLG and docetaxel markedly inhibited cell growth, phosphorylation of JAK-Src-STAT3 and induced substantial apoptosis. Additionally, pharmacological inhibition of JNK, p38, and ERK substantially blocked CLG-induced activation of MAPKs, cell viability, and apoptosis, thereby implicating the pivotal role of MAPKs in the observed anti-cancer effects of CLG. Taken together, our data suggest that CLG could effectively block constitutive STAT3/5 activation in SNU-1 cells but induce sustained MAPKs activation in SNU-16 cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
7
|
Xu JL, Xu WX, Tang JH. Exosomal circRNAs: a new communication method in cancer. Am J Transl Res 2021; 13:12913-12928. [PMID: 34956507 PMCID: PMC8661201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Exosomes are extracellular vesicles with unique membrane markers and components that participate in cellular communication. The contents of exosomes, including growth factors, microRNAs, long noncoding RNAs, and circular RNAs (circRNAs), have been recognized as prognostic biomarkers and promote cancer progression through cancer cell growth, metastasis, angiogenesis, and cancer development. One of the components of exosomes, circRNAs, are covalently closed and prevented from degrading, which results in their continually accumulating in exosomes. Evidence suggests that exosomal circRNAs are abundant and stable in body fluids and have been implicated in many diseases. In this article we summarize the biogenesis and function of circRNAs and explore the expressions of exosomal circRNAs in cancer, emphasizing the fact that exosomal circRNAs are a novel diagnostic biomarker in the early stages of cancer and/or a therapeutic target in further cancer treatment.
Collapse
Affiliation(s)
- Jia-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
- The First Clinical School of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
- The First Clinical School of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| |
Collapse
|
8
|
Geng A, Luo L, Ren F, Zhang L, Zhou H, Gao X. miR-29a-3p inhibits endometrial cancer cell proliferation, migration and invasion by targeting VEGFA/CD C42/PAK1. BMC Cancer 2021; 21:843. [PMID: 34289832 PMCID: PMC8293590 DOI: 10.1186/s12885-021-08506-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background This study aimed to investigate the mechanism of miR-29a-3p in regulating endometrial cancer (EC) progression. Methods A total of 72 EC patients were enrolled. EC cells were transfected. Cells proliferation, cloning ability, migration and invasion were researched by MTT assay, colony formation experiment, cell scratch test and Transwell experiment respectively. Dual-luciferase reporter assay was performed. Xenograft experiment was conducted using nude mice. miR-29a-3p, VEGFA, CDC42, PAK1 and p-PAK1 expression in cells/tissues was investigated by qRT-PCR and Western blot. Results miR-29a-3p expression was aberrantly reduced in EC patients, which was associated with poor outcome. miR-29a-3p inhibited EC cells proliferation, cloning formation, migration and invasion (P < 0.05 or P < 0.01 or P < 0.001). miR-29a-3p inhibited CDC42/PAK1 signaling pathway activity in EC cells (P < 0.01). VEGFA expression was directly inhibited by miR-29a-3p. miR-29a-3p suppressed EC cells malignant phenotype in vitro and growth in vivo by targeting VEGFA/CDC42/PAK1 signaling pathway (P < 0.05 or P < 0.01). Conclusion miR-29a-3p inhibits EC cells proliferation, migration and invasion by targeting VEGFA/CDC42/PAK1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08506-z.
Collapse
Affiliation(s)
- Aizhi Geng
- Department of Gynecology, The Second People's Hospital of Liaocheng, Liaocheng, 252601, Shandong, China
| | - Lin Luo
- Department of obstetrics and gynecology, People's Hospital of Rizhao Lanshan, Rizhao, 276807, Shandong, China
| | - Fengyun Ren
- Department of obstetrics and gynecology, People's Hospital of Huantai County, Zibo, 256400, Shandong, China
| | - Ling Zhang
- Medical Record Room, Gao Qing People's Hospital, Zibo, 256300, Shandong, China
| | - Haiying Zhou
- Department of Nursing, Gao Qing People's Hospital, Zibo, 256300, Shandong, China
| | - Xue Gao
- Department of Obstetrics and Gynecology, Zibo Hospital of Traditional Chinese Medicine, No. 75 Xinajian Middle Road, Zhoucun District, Zibo City, 255300, Shandong, China.
| |
Collapse
|
9
|
Yang Z, Ding H, Pan Z, Li H, Ding J, Chen Q. YY1-inudced activation of lncRNA DUXAP8 promotes proliferation and suppresses apoptosis of triple negative breast cancer cells through upregulating SAPCD2. Cancer Biol Ther 2021; 22:216-224. [PMID: 33683171 DOI: 10.1080/15384047.2021.1881201] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Double homeobox A pseudogene 8 (DUXAP8) belongs to long non-coding RNAs (lncRNAs), which has been proven to promote the biological processes of multiple human cancers. Triple-negative breast cancer (TNBC) is the leading cause of cancer-related death in women worldwide. However, the specific role of lncRNA DUXAP8 and its underlying mechanism in TNBC remains to be unclear. We detected the expression of DUXAP8 in TNBC cells through qRT-PCR analysis. The effects of DUXAP8 silencing on TNBC cell proliferation and apoptosis were identified using CCK-8 assay, EdU assay, flow cytometry analysis and TUNEL assay. The downstream microRNA (miRNA) and messenger RNA (mRNA) of DUXAP8 were searched out through bioinformatics analysis and mechanism experiments. Rescue assays were conducted to verify the involvement of suppressor APC domain containing 2 (SAPCD2) in DUXAP8-mediated TNBC cell proliferation and apoptosis. DUXAP8 was highly expressed in TNBC cells compared to that in normal breast cells. Knockdown of DUXAP8 inhibited TNBC cell proliferation and accelerated cell apoptosis. DUXAP8 interacted with miR-29a-3p and thus enhanced the expression of SAPCD2. Moreover, YY1 transcription factor could bind to DUXAP8 promoter to activate the transcription of DUXAP8. YY1-induced transcriptional activation of DUXAP8 promotes TNBC cell growth through miR-29a-3p/SAPCD2 axis.
Collapse
Affiliation(s)
- Zhen Yang
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Hongjian Ding
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhiyu Pan
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Huaqing Li
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Junbin Ding
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Qian Chen
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9030263. [PMID: 33799952 PMCID: PMC7998345 DOI: 10.3390/biomedicines9030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic resistance is an inevitable impediment towards effective cancer therapies. Evidence accumulated has shown that the signaling pathways and related factors are fundamentally responsible for therapeutic resistance via regulating diverse cellular events, such as epithelial-to-mesenchymal transition (EMT), stemness, cell survival/apoptosis, autophagy, etcetera. Noncoding RNAs (ncRNAs) have been identified as essential cellular components in gene regulation. The expression of ncRNAs is altered in cancer, and dysregulated ncRNAs participate in gene regulatory networks in pathological contexts. An in-depth understanding of molecular mechanisms underlying the modulation of therapeutic resistance is required to refine therapeutic benefits. This review presents an overview of the recent evidence concerning the role of human ncRNAs in therapeutic resistance, together with the feasibility of ncRNAs as therapeutic targets in pancreatic cancer.
Collapse
|
11
|
Pan H, Ding Y, Jiang Y, Wang X, Rao J, Zhang X, Yu H, Hou Q, Li T. LncRNA LIFR-AS1 promotes proliferation and invasion of gastric cancer cell via miR-29a-3p/COL1A2 axis. Cancer Cell Int 2021; 21:7. [PMID: 33407453 PMCID: PMC7789183 DOI: 10.1186/s12935-020-01644-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND LncRNA was known to be closely associated with the progression of human tumors. The role of lncRNA LIFR-AS1 in the pathogenesis and progression of gastric tumor is still unclear. The aim of this study was to investigate the function of LIFR-AS1 and the underlying mechanism in the pathogenesis and progression of gastric cancer. METHODS QRT-PCR was used to evaluate the expression of LIFR-AS1, miR-29a-3p and COL1A2 in gastric tumor tissues and cells. Western blotting was used to evaluate the protein expression of COL1A2 in gastric tumor cells. CCK-8 assay, transwell assay and flow cytometry were used to evaluate the roles of LIFR-AS1, miR-29a-3p and COL1A2 in cell proliferation, invasion, migration and apoptosis. The relationship among LIFR-AS1, miR-29a-3p and COL1A2 was assessed by bioinformatics analyses and luciferase reporter assay. RESULTS The expression levels of LIFR-AS1 were significantly increased in gastric tumor tissues and cells, while the expression levels of miR-29a-3p were decreased. The expression of miR-29a-3p was negatively correlated with the expression of LIFR-AS1 in gastric cancer tumor tissues. Knocking down of LIFR-AS1 inhibited proliferation, invasion and migration of gastric tumor cells, and induced apoptosis of gastric tumor cells. Bioinformatics analyses and integrated experiments revealed that LIFR-AS1 elevated the expression of COL1A2 through sponging miR-29a-3p, which further resulted in the progression of gastric tumor. CONCLUSION LIFR-AS1 plays an important role as a competing endogenous RNA in gastric tumor pathogenesis and may be a potential target for the diagnosis and treatment of gastric tumor.
Collapse
Affiliation(s)
- Haiyan Pan
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Yugang Jiang
- Department of gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, 250021, Shandong, People's Republic of China
| | - Xingjie Wang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Jiawei Rao
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Xingshan Zhang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Qinghua Hou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Tao Li
- Department of Chemotherapy, The People's Hospital of Gaozhou, Gaozhou, 525200, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Yao X, Ajani JA, Song S. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl Gastroenterol Hepatol 2020; 5:57. [PMID: 33073052 DOI: 10.21037/tgh.2020.02.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastases occur in 55-60% of patients with gastric cancer (GC) and are associated with a 2% 5-year overall survival rate. There are limited treatment options for these patients, and no targeted therapy or immunotherapy is available. Rational therapeutic targets remain to be found. In this review, we present the published literature and our own recent experience in molecular biology to identify important molecules and signaling pathways as well as cellular immunity involved in the peritoneal metastasis of GC. We also suggest potential novel strategies for improving the outcomes of GC patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
14
|
Song Q, Zhang H, He J, Kong H, Tao R, Huang Y, Yu H, Zhang Z, Huang Z, Wei L, Liu C, Wang L, Ning Q, Huang J. Long non-coding RNA LINC00473 acts as a microRNA-29a-3p sponge to promote hepatocellular carcinoma development by activating Robo1-dependent PI3K/AKT/mTOR signaling pathway. Ther Adv Med Oncol 2020; 12:1758835920937890. [PMID: 32922520 PMCID: PMC7457704 DOI: 10.1177/1758835920937890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Long non-coding RNAs have suppressive or oncogenic effects in various types
of cancers by serving as competing endogenous RNAs for specific microRNAs.
In the present study, we aim to delineate the underlying mechanism by which
the LINC00473/miR-29a-3p/Robo1 axis affects cell proliferation, migration,
invasion, and metastasis in hepatocellular carcinoma (HCC). Methods: The level of Robo1 was examined in HCC tissues and cells, along with its
regulatory effects on proliferation, migration, and invasion of HCC cells.
Afterwards, the possible involvement of the PI3K/AKT/mTOR signaling pathway
was determined. Next, miR-29a-3p expression was overexpressed or inhibited
to investigate its regulatory role on HCC cell activities. The interaction
among miR-29a-3p, Robo1, and LINC00473 was further characterized. Finally, a
xenograft tumor in nude mice was conducted to measure tumorigenesis and
metastasis in vivo. Results: miR-29a-3p was downregulated while Robo1 was upregulated in HCC tissues and
cells. miR-29a-3p targeted Robo1 and negatively regulated its expression. In
response to miR-29a-3p overexpression, Robo1 silencing or LINC00473
silencing, HCC cell proliferation, migration, invasion, tumor progression,
and metastasis were impeded, which was involved with the inactivation of the
PI3K/AKT/mTOR signaling pathway. Notably, LINC00473 could competitively bind
to miR-29a-3p to upregulate Robo1 expression. Conclusion: LINC00473 might be involved in HCC progression by acting as a miR-29a-3p
sponge to upregulate the expression of Robo1 that activates the
PI3K/AKT/mTOR signaling pathway, which leads to enhanced cell proliferation,
migration, invasion, tumor progression, and metastasis in HCC.
Collapse
Affiliation(s)
- Qiqin Song
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Hongyue Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jinan He
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Yu Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Haijing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Zhongwei Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Zhiyong Huang
- Department of Hepatobiliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Lai Wei
- Department of Organ Transplant, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Chenghai Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Likui Wang
- Savaid Medical School, University of Chinese Academy of Science Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jiaquan Huang
- Department and Institute of Infection Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science Technology, No. 1095 JieFang Avenue, Wuhan 430030, Hubei Province, P. R. China
| |
Collapse
|
15
|
You Y, Wang Q, Li H, Ma Y, Deng Y, Ye Z, Bai F. Zoledronic acid exhibits radio-sensitizing activity in human pancreatic cancer cells via inactivation of STAT3/NF-κB signaling. Onco Targets Ther 2019; 12:4323-4330. [PMID: 31239706 PMCID: PMC6556542 DOI: 10.2147/ott.s202516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Although pancreatic cancer is typically radio-sensitive, local treatment failure and metastasis are commonly caused by the development of resistance to radiotherapy. In the current study, the radio-sensitizing actions of zoledronic acid (ZOL) on pancreatic cancer cells were investigated. Materials and methods: Three human pancreatic cancer cell lines were exposed to ZOL, ionizing radiation (IR), or a combination of both, and the effects of the respective drug regimens on cell proliferation and invasion were examined. Results: Combined treatment with low doses of ZOL plus IR efficiently increased cell death and attenuated cell invasion compared with the individual use of ZOL or IR. These effects of ZOL were associated with inactivation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB). Conclusion: Collectively, these data suggest that ZOL in combination with IR is a promising therapeutic strategy for enhancing radio-sensitivity in pancreatic cancer cells via downregulation of the STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanjie You
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Qiang Wang
- Department of Science and Education, Ningxia Hui Autonomous Region People's Hospital, Yinchuan 750021, People's Republic of China
| | - Haijun Li
- Department of Radiation Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641003, People's Republic of China
| | - Yuhong Ma
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Yanhong Deng
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Zhengcai Ye
- Endoscopy Center, Ningxia Hui Autonomous Region People's Hospital, Yinchuan 750021, People's Republic of China
| | - Feihu Bai
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| |
Collapse
|