1
|
Zhang C, Zhang S, Liu M, Wang Y, Wang D, Xu S. Screening and identification of miRNAs regulating Tbx4/5 genes of Pampus argenteus. PeerJ 2022; 10:e14300. [PMID: 36312751 PMCID: PMC9610670 DOI: 10.7717/peerj.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Background Silver pomfret (Pampus argenteus) is one of the most widely distributed and economically important pelagic fish species. However, an unique morphological feature of P. argenteus is the loss of pelvic fins, which can increase the energy requirement during food capture to some extent and is therefore not conducive to artificial culture. Tbx4/5 genes are highly conserved regulatory factors that regulate limb development in vertebrates and are in turn regulated by microRNAs (miRNAs). However, the miRNAs that directly regulate the Tbx4/5 genes in P. argenteus remain to be elucidated. Methods The Tbx4/5 genes of P. argenteus were first cloned, and the small RNA transcriptomes were sequenced by high-throughput sequencing during the critical period of the fin development at days 1, 7, and 13 of hatching. The miRNAs regulating the Tbx4/5 genes of P. argenteus were subsequently predicted by bioinformatics analysis, and the related miRNAs were verified in vitro using a dual fluorescence reporter system. Results A total of 662 miRNAs were identified, of which 257 were known miRNAs and 405 were novel miRNAs were identified. Compared to day 1, 182 miRNAs were differentially expressed (DE) on day 7, of which 77 and 105 miRNAs were downregulated and upregulated, respectively, while 278 miRNAs were DE on day 13, of which 136 and 142 miRNAs were downregulated and upregulated, respectively. Compared to day 13, four miRNAs were DE on day 7, of which three miRNAs were downregulated and one miRNA was upregulated. The results of hierarchical clustering of the miRNAs revealed that the DE genes were inversely expressed between days 1 and 7, and between days 1 and 13 of larval development, indicating that the larvae were in the peak stage of differentiation. However, the number of DE genes between days 7 and 13 of larval development was relatively small, suggesting the initiation of development. The potential target genes of the DE miRNAs were subsequently predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of target genes were performed. The results suggested that the DE miRNAs were involved in growth, development, and signal transduction pathways, of which the Wnt and Fgfs signaling pathways are known to play important roles in the growth and development of fins. The results of dual fluorescence reporter assays demonstrated that miR-102, miR-301c, and miR-589 had a significant negative regulatory effect on the 3'-UTR of the Tbx4 gene, while miR-187, miR-201, miR-219, and miR-460 had a significant negative regulatory effect on the 3'-UTR of the Tbx5 gene. Altogether, the findings indicated that miRNAs play an important role in regulating the growth and development of pelvic fins in P. argenteus. This study provides a reference for elucidating the interactions between the miRNAs and target genes of P. argenteus in future studies.
Collapse
Affiliation(s)
| | | | | | - Yajun Wang
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| | | | - Shanliang Xu
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Saleh AA, El-Hefnawy SM, Kasemy ZA, Alhagaa AA, Nooh MZ, Arafat ES. Mi-RNA-93 and Mi-RNA-152 in the Diagnosis of Type 2 Diabetes and Diabetic Retinopathy. Br J Biomed Sci 2022; 79:10192. [PMID: 35996507 PMCID: PMC8915732 DOI: 10.3389/bjbs.2021.10192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022]
Abstract
Background and Aim: Diabetes mellitus (DM) is a chronic disorder with diabetic retinopathy (DR) as one of its main microvascular outcomes, being a prime cause of vision loss. Dysregulation of microRNAs (miRNAs) has been associated with some diabetic microvascular complications such as diabetic retinopathy. This hypothesised changes in the serum of miR-93 and miR-152 in diabetes and diabetic retinopathy. Methods: The study cohort consisted of 80 healthy volunteers, 80 type 2 diabetic patients, and 80 diabetic retinopathy patients, of whom 40 had proliferative (PDR) and 40 non-proliferative retinopathy (NPDR). Serum fasting and 2-hour postprandial glucose (2hPP), glycated haemoglobin (HbA1c), fasting insulin, and HOMA-IR were evaluated by routine methods, miR-93 and miR-152 expression by quantitative real-time PCR. Results: FBG, 2hPP, fasting insulin, HOMA-IR, and miR-152 showed an increasing trend across groups while miR-93 showed a decreasing trend (all p < 0.001). Binary logistic regression analysis for prediction of DR found that the most significant were miR-152 (OR 1.37, 95% CI: 1.18-1.58, <0.001), BMI (1.13, [1.07-1.31], p = 0.004), duration of disease (1.29 [1.04-1.6] p = 0.018), and miR-152 (0.01, [0.0-0.47] p = 0.019). The most significant predictors of PDR were miR-152 (OR = 1.47, 95% CI: 1.12-1.92, p = 0.005), HOMA-IR (2.66 [1.30-5.45] p = 0.007), and miR-93 (0.25 [0.07-0.86] p = 0.028). Conclusion: MiR-93 and miR-152 can differentiate patients with diabetes and those with DR. Both miRNAs might be potential biomarkers for diabetes and diabetic retinopathy, and specifically for proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- A. A. Saleh
- Department of Medical Biochemistry and Molecular Biology , Faculty of Medicine, Menoufia University, Shebein Alkom, Egypt
| | - S. M. El-Hefnawy
- Department of Medical Biochemistry and Molecular Biology , Faculty of Medicine, Menoufia University, Shebein Alkom, Egypt
| | - Z. A. Kasemy
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebein Alkom, Egypt
| | - A. A. Alhagaa
- Department of Ophthalmology, Faculty of Medicine, Menoufia University, Shebein Alkom, Egypt
| | - M. Z. Nooh
- Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebein Alkom, Egypt
| | - E. S. Arafat
- Department of Medical Biochemistry and Molecular Biology , Faculty of Medicine, Menoufia University, Shebein Alkom, Egypt
| |
Collapse
|
3
|
Li W, Yang S, Chen G, He S. MiR-200c-3p regulates pyroptosis by targeting SLC30A7 in diabetic retinopathy. Hum Exp Toxicol 2022; 41:9603271221099589. [PMID: 35607288 DOI: 10.1177/09603271221099589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
CLINICAL RELEVANCE MicroRNAs (miRNAs) have been reported to be involved in the progression of various diseases. Studying the regulatory mechanisms of miRNAs can help clinical treatment. BACKGROUND Diabetic retinopathy (DR) is one of the complications of diabetes. The objective of this study was to elucidate the underlying molecular mechanisms by which miR-200c-3p regulates the pyroptosis of DR cell. METHODS Human retinal microvascular endothelial cells (HRMECs) and high glucose (HG) cultures established DR cell model in vitro. RT-qPCR is used to detect the expression level of miRNAs. CCK-8 assays and flow cytometry are used to detect apoptosis of HRMECs cell. Western blotting is used to detect cleaved caspase-3, cleaved caspase-1, and N-GSDMD proteins levels in HRMECs. The ELISA assay is used to detect the expression of IL-1β and IL-18. Predict and validate potential binding sites between miR-200c-3p and SLC30A7 by dual luciferase reporter gene analysis. RESULTS The results showed that HG caused damage to HRMECs through the pyroptosis pathway rather than the apoptosis pathway. MiR-200c-3p is highly expressed in HG induced-HRMECs, and knockdown of miR-200c-3p mitigates HG-induced HRMECs pyroptosis. MiR-200c-3p negatively targets SLC30A7 in HRMECs, and miR-200c-3p regulates pyroptosis of HG-induced HRMECs by targeting SLC30A7. CONCLUSION The results suggest that miR-200c-3p might be a promising interference target for DR prevention and treatment. The results of current study may provide new insights into development of therapeutic strategies for DR.
Collapse
Affiliation(s)
- Weina Li
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, China
| | - Sheng Yang
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, China
| | - Guangsheng Chen
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, China
| | - Shiping He
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, China
| |
Collapse
|
4
|
Paschou SA, Siasos G, Katsiki N, Tentolouris N, Tousoulis D. The Role of microRNAs in the Development of Type 2 Diabetes Complications. Curr Pharm Des 2021; 26:5969-5979. [PMID: 33138753 DOI: 10.2174/1381612826666201102102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs represent a class of small (19-25 nucleotides) single-strand pieces of RNA that are noncoding ones. They are synthesized by RNA polymerase II from transcripts that fold back on themselves. They mostly act as gene regulatory agents that pair with complementary sequences on mRNA and produce silencing complexes, which, in turn, suppress coding genes at a post-transcriptional level. There is now evidence that microRNAs may affect insulin secretion or insulin action, as they can alter pancreatic beta cells development, insulin production, as well as insulin signaling. Any molecular disorder that affects these pathways can deteriorate insulin resistance and lead to type 2 diabetes mellitus (T2DM) onset. Furthermore, the expression of several microRNAs is up- or down-regulated in the presence of diabetic microvascular complications (i.e., peripheral neuropathy, nephropathy, retinopathy, foot ulcers), as well as in patients with coronary heart disease, stroke, and peripheral artery disease. However, more evidence is needed, specifically regarding T2DM patients, to establish the use of such microRNAs as diagnostical biomarkers or therapeutic targets in daily practice.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Centre, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Chang X, Zhu G, Cai Z, Wang Y, Lian R, Tang X, Ma C, Fu S. miRNA, lncRNA and circRNA: Targeted Molecules Full of Therapeutic Prospects in the Development of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:771552. [PMID: 34858342 PMCID: PMC8631471 DOI: 10.3389/fendo.2021.771552] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a common diabetic complication and the main cause of blindness worldwide, which seriously affects the quality of life of patients. Studies have shown that noncoding RNA (ncRNA) has distinct differentiated expression in DR and plays an important role in the occurrence and development of DR. ncRNAs represented by microRNAs (miRNAs), lncRNAs (lncRNAs), and circRNAs (circRNAs) have been shown to be widely involved in the regulation of gene expression and affect multiple biological processes of retinopathy. This article will review three RNAs related to the occurrence and development of DR on the basis of previous studies (especially their effects on retinal microangiopathy, retinal pigment epithelial cells, and retinal nerve cells) and discuss their underlying mechanisms and connections. Overall, this review will help us better understand the role of ncRNAs in the occurrence and development of DR and provide ideas for exploring potential therapeutic directions and targets.
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zongyan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rongna Lian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou, China
| | - Chengxu Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou, China
- *Correspondence: Songbo Fu,
| |
Collapse
|
6
|
Wang M, Zheng H, Zhou X, Zhang J, Shao G. miR-122 promotes diabetic retinopathy through targeting TIMP3. Anim Cells Syst (Seoul) 2020; 24:275-281. [PMID: 33209201 PMCID: PMC7646554 DOI: 10.1080/19768354.2020.1816580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a primary complication of diabetes mellitus. DR can cause severe vision loss for patients. miR-122 is elevated in DR patients, while its role in DR is unclear. Hence, the purpose of this study was to analyze the effect of miR-122 on the function of high glucose-induced REC cells and the underlying molecular mechanisms. In this study, our results revealed that miR-122 was up-regulated in high glucose-induced human retinal pigment epithelial cells (ARPE-19). High glucose decreased the cell viability of ARPE-19 cells, which was then restored by miR-122 knockdown. In addition, miR-122 knockdown suppressed apoptosis of high glucose-induced ARPE-19 cells. High glucose also inhibited B-cell lymphoma-2 (Bcl-2) level and increased cleaved caspase-3 level in ARPE-19 cells, which were reversed by miR-122 knockdown. Tissue inhibitor of metalloproteinases-3 (TIMP3) was a direct target of miR-122. TIMP3 was decreased in high glucose-induced ARPE-19 cells, and the decrease was abrogated by miR-122 knockdown. In addition, the effects of miR-122 overexpression in cell viability and apoptosis of high glucose-induced ARPE-19 were abolished by overexpression of TIMP3. In conclusion, the effect and mechanism of miR-122 on high glucose-induced ARPE-19 cells were demonstrated for the first time. miR-122 promoted diabetic retinopathy through targeting TIMP3, making miR-122 a promising target for diabetic retinopathy therapy.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Huifen Zheng
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Xianbo Zhou
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Jiwei Zhang
- Department of Ophthalmology, Hangzhou Lin'an District People's Hospital, Hangzhou City, People's Republic of China
| | - Guanghui Shao
- Department of Ophthalmology, Dongying Shengli Hospital of Traditional Chinese Medicine, Dongying City, People's Republic of China
| |
Collapse
|
7
|
Cui C, Li Y, Liu Y. Down-regulation of miR-377 suppresses high glucose and hypoxia-induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1. Hum Cell 2019; 32:260-274. [DOI: 10.1007/s13577-019-00240-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
|