1
|
Duron DI, Tanguturi P, Campbell CS, Chou K, Bejarano P, Gabriel KA, Bowden JL, Mishra S, Brackett C, Barlow D, Houseknecht KL, Blagg BSJ, Streicher JM. Inhibiting spinal cord-specific hsp90 isoforms reveals a novel strategy to improve the therapeutic index of opioid treatment. Sci Rep 2024; 14:14715. [PMID: 38926482 PMCID: PMC11208559 DOI: 10.1038/s41598-024-65637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Opioids are the gold standard for the treatment of chronic pain but are limited by adverse side effects. In our earlier work, we showed that Heat shock protein 90 (Hsp90) has a crucial role in regulating opioid signaling in spinal cord; Hsp90 inhibition in spinal cord enhances opioid anti-nociception. Building on these findings, we injected the non-selective Hsp90 inhibitor KU-32 by the intrathecal route into male and female CD-1 mice, showing that morphine anti-nociceptive potency was boosted by 1.9-3.5-fold in acute and chronic pain models. At the same time, tolerance was reduced from 21-fold to 2.9 fold and established tolerance was rescued, while the potency of constipation and reward was unchanged. These results demonstrate that spinal Hsp90 inhibition can improve the therapeutic index of morphine. However, we also found that systemic non-selective Hsp90 inhibition blocked opioid pain relief. To avoid this effect, we used selective small molecule inhibitors and CRISPR gene editing to identify 3 Hsp90 isoforms active in spinal cord (Hsp90α, Hsp90β, and Grp94) while only Hsp90α was active in brain. We thus hypothesized that a systemically delivered selective inhibitor to Hsp90β or Grp94 could selectively inhibit spinal cord Hsp90 activity, resulting in enhanced opioid therapy. We tested this hypothesis using intravenous delivery of KUNB106 (Hsp90β) and KUNG65 (Grp94), showing that both drugs enhanced morphine anti-nociceptive potency while rescuing tolerance. Together, these results suggest that selective inhibition of spinal cord Hsp90 isoforms is a novel, translationally feasible strategy to improve the therapeutic index of opioids.
Collapse
Affiliation(s)
- David I Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Christopher S Campbell
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Kerry Chou
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Paul Bejarano
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Katherin A Gabriel
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Jessica L Bowden
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Brackett
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.
- Comprehensive Center for Pain and Addiction, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Tertil M, Skupio U, Kudla L, Wiktorowska L, Przewlocki R. Astroglial Knockout of Glucocorticoid Receptor Attenuates Morphine Withdrawal Symptoms, but Not Antinociception and Tolerance in Mice. Cell Mol Neurobiol 2022; 42:2423-2426. [PMID: 33821329 PMCID: PMC9418269 DOI: 10.1007/s10571-021-01086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/04/2022]
Abstract
The development of tolerance and drug dependence limit the clinical application of opioids for the treatment of severe pain. Glucocorticoid receptors (GRs) are among molecular substrates involved in these processes. Most studies focus on the role of neuronal GR, while the involvement of GR on glial cells is not fully understood. To address this issue, we used a transgenic model of conditional GR knockout mice, targeted to connexin 30-expressing astrocytes, treated with repeated doses of morphine. We observed no difference between control mice and astrocytic GR knockouts in the development of antinociceptive tolerance. Nevertheless, when animals were subjected to precipitated withdrawal, knockouts presented some attenuated symptoms, including jumping. Taken together, our data suggest that hippocampal and spinal astrocytic GRs appear to be involved in opioid withdrawal, and drugs targeting the GR may relieve some symptoms of morphine withdrawal without influencing its antinociceptive properties.
Collapse
Affiliation(s)
- Magdalena Tertil
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Urszula Skupio
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Lucja Wiktorowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|