1
|
Zhao T, Xie Z, Xi Y, Liu L, Li Z, Qin D. How to Model Rheumatoid Arthritis in Animals: From Rodents to Non-Human Primates. Front Immunol 2022; 13:887460. [PMID: 35693791 PMCID: PMC9174425 DOI: 10.3389/fimmu.2022.887460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by both genetic and environmental factors. At present, rodent models are primarily used to study the pathogenesis and treatment of RA. However, the genetic divergences between rodents and humans determine differences in the development of RA, which makes it necessary to explore the establishment of new models. Compared to rodents, non-human primates (NHPs) are much more closely related to humans in terms of the immune system, metabolic conditions, and genetic make-up. NHPs model provides a powerful tool to study the development of RA and potential complications, as well as preclinical studies in drug development. This review provides a brief overview of the RA animal models, emphasizes the replication methods, pros and cons, as well as evaluates the validity of the rodent and NHPs models.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Liu
- Ge Jiu People’s Hospital, Yunnan Honghe Prefecture Central Hospital, Gejiu, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Stephens KE, Zhou W, Renfro Z, Ji Z, Ji H, Guan Y, Taverna SD. Global gene expression and chromatin accessibility of the peripheral nervous system in animal models of persistent pain. J Neuroinflammation 2021; 18:185. [PMID: 34446036 PMCID: PMC8390277 DOI: 10.1186/s12974-021-02228-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Efforts to understand genetic variability involved in an individual's susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. METHODS To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund's adjuvant (CFA) in rats. RESULTS Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequences known to bind transcription factors in the CCI DARs and 33 in the CFA DARs. Two motifs were significantly enriched in both models. CONCLUSIONS Our improved understanding of the changes in chromatin accessibility that occur in chronic pain states may identify regulatory genomic elements that play essential roles in modulating gene expression in the DRG.
Collapse
Affiliation(s)
- Kimberly E Stephens
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA.
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| | - Weiqiang Zhou
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Renfro
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Genetic Variation as a Possible Explanation for the Heterogeneity of Pain in Tendinopathy: What can we learn from other pain syndromes? CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.4-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Wang QS, Xu BX, Fan KJ, Li YW, Wu J, Wang TY. Dexamethasone-Loaded Thermosensitive Hydrogel Suppresses Inflammation and Pain in Collagen-Induced Arthritis Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4101-4113. [PMID: 33116399 PMCID: PMC7547127 DOI: 10.2147/dddt.s256850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Purpose To overcome negative adverse effects and improve therapeutic index of dexamethasone (Dex) in rheumatoid arthritis (RA), we developed a novel sustained release formulation-intra-articular injectable dexamethasone-loaded thermosensitive hydrogel (DLTH) with chitosan-glycerin-borax as carrier for the remission of inflammation and pain. The focus of this article is to explore both anti-inflammatory and pain-relieving effects of DLTH joint injection in bovine type-II collagen-induced arthritis (CIA) rats. Methods Wistar rats were randomized into three groups, including the normal group (n=6), the model group (n=6) and the DLTH group (n=10). Joint injection of DLTH (1mg/kg Dex per rat) was injected on day 12 in the DLTH group twice a week for three weeks. Clinical signs of body weight, paw swelling and arthritis scores, histologic analysis, hind paw mechanical withdrawal threshold (MWT), plantar pressure pain threshold (PPT) were taken into consideration. Serum contents of IL-17A, prostaglandin E2 (PGE2), prostacyclin 2 (PGI2) and prostaglandin D2 (PGD2), real-time polymerase chain reaction (PCR) analysis of inflammatory factors and pain-related mediators in synovium and dorsal root ganglia (DRG), Western blotting of NF-κB in synovium were all evaluated. Results Paw swelling, arthritis scores and joint inflammation destruction were all attenuated in the DLTH-treated group. Results showed that DLTH not only down-regulated serum IL-17A, but also mRNA levels of inflammatory factors and NGF, and key proteins contents of the NF-κB pathway in synovium. Increases of MWT and PPT in DLTH-treated rats elucidated pain-reducing effects of DLTH. Elevated serum PGD2 levels and declines of serum PGE2 and PGI2, and inflammatory and pain-related genes in DRGs in the DLTH group were also recorded. Conclusion These data elucidated that DLTH joint injection impeded synovial inflammation processes through down-regulating transcription activity of NF-κB pathway, and intra-articular DLTH may aid in the regulation of RA pain through regulating inflammation and pain conduction process.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bing-Xin Xu
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai-Jian Fan
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yun-Wu Li
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Wu
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ting-Yu Wang
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Ramirez MF, Kamdar BB, Cata JP. Optimizing Perioperative Use of Opioids: A Multimodal Approach. CURRENT ANESTHESIOLOGY REPORTS 2020; 10:404-415. [PMID: 33281504 DOI: 10.1007/s40140-020-00413-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review The main purpose of this article is to review recent literature regarding multimodal analgesia medications, citing their recommended doses, efficacy, and side effects. The second part of this report will provide a description of drugs in different stages of development which have novel mechanisms with less side effects such as tolerance and addiction. Recent Findings Multimodal analgesia is a technique that facilitates perioperative pain management by employing two or more systemic analgesics along with regional anesthesia, when possible. Even though opioids and non-opioid analgesics remain the most common medication used for acute pain management after surgery, they have many undesirable side effects including the potential for misuse. Newer analgesics including peripheral acting opioids, nitric oxide inhibitors, calcitonin gene-related peptide receptor antagonists, interleukin-6 receptor antagonists and gene therapy are under intensive investigation. Summary A patient's first exposure to opioids is often in the perioperative setting, a vulnerable time when multimodal therapy can play a large role in decreasing opioid exposure. Additionally, the current shift towards faster recovery times, fewer post-operative complications and improved cost-effectiveness during the perioperative period has made multimodal analgesia a central pillar of Enhanced Recovery After Surgery (ERAS) protocols.
Collapse
Affiliation(s)
- Maria F Ramirez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Brinda B Kamdar
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| |
Collapse
|
6
|
Wang Y, Li H, Shi Y, Wang S, Xu Y, Li H, Liu D. miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway. Biosci Rep 2020; 40:BSR20193419. [PMID: 32597476 PMCID: PMC7340866 DOI: 10.1042/bsr20193419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
miR-143-3p is correlated with inflammatory pain responses, such as hsa-miR-143-3p expression reduction in fibromyalgia. The present study aimed to explore the effects of miR-143-3p and Toll-like receptor (TLR) 4/myeloid differentiation factor 88 (MyD88)/NF-κB signaling pathway on pulmonary inflammatory factors levels and alveolar epithelial cell apoptosis in mycoplasmal pneumonia mice. Twenty mice were selected as normal group. The 120 successfully modeled Mycoplasma pneumoniae (MP) infection mice were randomly divided into model group (without any treatment), negative control (NC) group (injected with NC mimic), miR-143-3p mimic group (injected with miR-143-3p mimic), miR-143-3p inhibitor group (injected with miR-143-3p inhibitor), TAK-242 group (treatment with TAK-242), and miR-143-3p inhibitor + TAK-242 group (treatment with miR-143-3p inhibitor + TAK-242). Compared with model group, model mice had up-regulated miR-143-3p expression and decreased MyD88 and p-NF-κB p50 protein expressions (all P<0.05); Model mice treated with miR-143-3p mimic and TAK-242 had reduced interleukin (IL)-2 and tumor necrosis factor (TNF)-α contents and protein expressions of MyD88, p-NF-κB p50, increased IL-10 content, fewer alveolar epithelial cell apoptosis, lower Bax expression and higher Bcl-2 expression (all P<0.05); however, mice with miR-143-3p inhibitor treatment showed opposite trends in terms of above indicators. The exacerbation of mycoplasmal pneumonia caused by miR-143-3p inhibitor was partly improved by miR-143-3p inhibitor + TAK-242 combination treatment (all P<0.05). Therefore, up-regulation of miR-143-3p expression may ameliorate pulmonary inflammatory factors levels and reduce alveolar epithelial cell apoptosis in mycoplasmal pneumonia mice by inhibiting TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Pediatric Respiratory Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China
| | - Huan Li
- Department of Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, Gansu Province, China
| | - Yongsheng Shi
- Department of Pediatric Respiratory Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China
| | - Shuying Wang
- Department of Pediatric Respiratory Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China
| | - Yan Xu
- Department of Pediatric Respiratory Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China
| | - Hanyi Li
- Department of Pediatric Respiratory Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China
| | - Donghai Liu
- Department of Pediatric Respiratory Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
7
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
8
|
Oto Y, Takahashi Y, Kurosaka D, Kato F. Alterations of voluntary behavior in the course of disease progress and pharmacotherapy in mice with collagen-induced arthritis. Arthritis Res Ther 2019; 21:284. [PMID: 31831067 PMCID: PMC6909634 DOI: 10.1186/s13075-019-2071-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis and bone destruction at the joints, causing pain and motor disturbance. Despite the better control of inflammation and joint deformity afforded by modern disease-modifying anti-rheumatic drugs, many patients with RA remain dissatisfied with their treatment, primarily because of sensory-emotional distress. Pre-clinical tests that can evaluate not only the symptoms of arthritis but also the associated pain as sensory-emotional experience are urgently needed. Methods Here, we introduce two types of novel methods for evaluation of voluntary behavior in a commonly used model of RA (collagen-induced arthritis; CIA) in male mice. First, spontaneous motor activity was assessed with a running wheel placed in home cages and the number of rotations was continuously recorded in a 12:12-h light environment. Second, temperature preference was assessed by measuring the time spent in either of the floor plates with augmenting (25 to 49 °C) or fixed temperature (25 °C). We also evaluated the effects of tofacitinib on CIA-associated changes in voluntary wheel running and temperature preference. Results We detected a significant decrease in voluntary wheel running, a significant shift in the distribution of movement in the dark phase, and a significant increase in the time spent in warmer environments than the room temperature in the mice with CIA. These alterations in voluntary behavior have never been described with conventional methods. We also revealed tofacitinib-resistant significant changes in the voluntary behavior and choice of temperature despite significant mitigation of the symptoms of arthritis. Conclusions We described for the first time significant alterations of the voluntary behavior of the mice with CIA during the clinical periods, indicating that the overall physical/motivational states and its circadian variation, as well as the specific preference to a certain environmental temperature, are modified in the mice with CIA, as observed in human patients. Some of these did not parallel with the conventional arthritis scores, particularly during the pharmacotherapy suggesting that mice with CIA show not only the peripheral symptoms but also the central consequences. The use of these approaches would also help clarify the biological mechanisms underlying physician-patient discordance in the assessment of RA.
Collapse
Affiliation(s)
- Yohsuke Oto
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan. .,Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan. .,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|