1
|
Yang WJ, Han FH, Gu YP, Qu H, Liu J, Shen JH, Leng Y. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis. Acta Pharmacol Sin 2023; 44:1649-1664. [PMID: 36997665 PMCID: PMC10374578 DOI: 10.1038/s41401-023-01081-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Excessive apoptosis of intestinal epithelial cell (IEC) is a crucial cause of disrupted epithelium homeostasis, leading to the pathogenesis of ulcerative colitis (UC). The regulation of Takeda G protein-coupled receptor-5 (TGR5) in IEC apoptosis and the underlying molecular mechanisms remained unclear, and the direct evidence from selective TGR5 agonists for the treatment of UC is also lacking. Here, we synthesized a potent and selective TGR5 agonist OM8 with high distribution in intestinal tract and investigated its effect on IEC apoptosis and UC treatment. We showed that OM8 potently activated hTGR5 and mTGR5 with EC50 values of 202 ± 55 nM and 74 ± 17 nM, respectively. After oral administration, a large amount of OM8 was maintained in intestinal tract with very low absorption into the blood. In DSS-induced colitis mice, oral administration of OM8 alleviated colitis symptoms, pathological changes and impaired tight junction proteins expression. In addition to enhancing intestinal stem cell (ISC) proliferation and differentiation, OM8 administration significantly reduced the rate of apoptotic cells in colonic epithelium in colitis mice. The direct inhibition by OM8 on IEC apoptosis was further demonstrated in HT-29 and Caco-2 cells in vitro. In HT-29 cells, we demonstrated that silencing TGR5, inhibition of adenylate cyclase or protein kinase A (PKA) all blocked the suppression of JNK phosphorylation induced by OM8, thus abolished its antagonizing effect against TNF-α induced apoptosis, suggesting that the inhibition by OM8 on IEC apoptosis was mediated via activation of TGR5 and cAMP/PKA signaling pathway. Further studies showed that OM8 upregulated cellular FLICE-inhibitory protein (c-FLIP) expression in a TGR5-dependent manner in HT-29 cells. Knockdown of c-FLIP blocked the inhibition by OM8 on TNF-α induced JNK phosphorylation and apoptosis, suggesting that c-FLIP was indispensable for the suppression of OM8 on IEC apoptosis induced by OM8. In conclusion, our study demonstrated a new mechanism of TGR5 agonist on inhibiting IEC apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway in vitro, and highlighted the value of TGR5 agonist as a novel therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Wen-Ji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Hui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Ren W, Cha X, Xu R, Wang T, Liang C, Chou J, Zhang X, Li F, Wang S, Cai B, Jiang P, Wang H, Liu H, Yu Y. Cisplatin attenuates taste cell homeostasis and induces inflammatory activation in the circumvallate papilla. Theranostics 2023; 13:2896-2913. [PMID: 37284449 PMCID: PMC10240818 DOI: 10.7150/thno.81153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Gustation is important to several biological functions in mammals. However, chemotherapy drugs often harm taste perception in cancer patients, while the underlying mechanism is still unclear for most drugs and there is no effective way to restore taste function. This study investigated the effects of cisplatin on the taste cell homeostasis and gustatory function. Methods: We used both mice and taste organoid models to study the effect of cisplatin on taste buds. Gustometer assay, gustatory nerve recording, RNA-Sequencing, quantitative PCR, and immunohistochemistry was performed to analyze the cisplatin-induced alteration in taste behavior and function, transcriptome, apoptosis, cell proliferation and taste cell generation. Results: Cisplatin inhibited proliferation and promoted apoptosis in the circumvallate papilla, leading to significant impairment in taste function and receptor cell generation. The transcriptional profile of genes associated with cell cycle, metabolic process and inflammatory response was significantly altered after cisplatin treatment. Cisplatin inhibited growth, promoted apoptosis, and deferred taste receptor cell differentiation in taste organoids. LY411575, a γ-secretase inhibitor, reduced the number of apoptotic cells and increased the number of proliferative cells and taste receptor cells, potentially suggesting as a taste tissue protective agent against chemotherapy. LY411575 treatment could offset the increased number of Pax1+ or Pycr1+ cells induced by cisplatin in the circumvallate papilla and taste organoids. Conclusion: This study highlights the inhibitory effects of cisplatin on taste cell homeostasis and function, identifies critical genes and biological processes regulated by chemotherapy, and proposes potential therapeutic targets and strategy for taste dysfunction in cancer patients.
Collapse
Affiliation(s)
- Wenwen Ren
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Xudong Cha
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Rui Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Tianyu Wang
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Caiquan Liang
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Janice Chou
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Xiujuan Zhang
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Fengzhen Li
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Shenglei Wang
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Boyu Cai
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Huanhai Liu
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Yiqun Yu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
- Olfactory Disorder Diagnosis and Treatment Center, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
3
|
Sajuthi SP, Everman JL, Jackson ND, Saef B, Rios CL, Moore CM, Mak ACY, Eng C, Fairbanks-Mahnke A, Salazar S, Elhawary J, Huntsman S, Medina V, Nickerson DA, Germer S, Zody MC, Abecasis G, Kang HM, Rice KM, Kumar R, Zaitlen NA, Oh S, Rodríguez-Santana J, Burchard EG, Seibold MA. Nasal airway transcriptome-wide association study of asthma reveals genetically driven mucus pathobiology. Nat Commun 2022; 13:1632. [PMID: 35347136 PMCID: PMC8960819 DOI: 10.1038/s41467-022-28973-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
To identify genetic determinants of airway dysfunction, we performed a transcriptome-wide association study for asthma by combining RNA-seq data from the nasal airway epithelium of 681 children, with UK Biobank genetic association data. Our airway analysis identified 95 asthma genes, 58 of which were not identified by transcriptome-wide association analyses using other asthma-relevant tissues. Among these genes were MUC5AC, an airway mucin, and FOXA3, a transcriptional driver of mucus metaplasia. Muco-ciliary epithelial cultures from genotyped donors revealed that the MUC5AC risk variant increases MUC5AC protein secretion and mucus secretory cell frequency. Airway transcriptome-wide association analyses for mucus production and chronic cough also identified MUC5AC. These cis-expression variants were associated with trans effects on expression; the MUC5AC variant was associated with upregulation of non-inflammatory mucus secretory network genes, while the FOXA3 variant was associated with upregulation of type-2 inflammation-induced mucus-metaplasia pathway genes. Our results reveal genetic mechanisms of airway mucus pathobiology.
Collapse
Affiliation(s)
- Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Benjamin Saef
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cydney L Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Noah A Zaitlen
- Department of Neurology and Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sam Oh
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
4
|
Apple Polyphenols Extract (APE) Alleviated Dextran Sulfate Sodium Induced Acute Ulcerative Colitis and Accompanying Neuroinflammation via Inhibition of Apoptosis and Pyroptosis. Foods 2021; 10:foods10112711. [PMID: 34828992 PMCID: PMC8619666 DOI: 10.3390/foods10112711] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
The main aim of this study was to investigate the potent anti-apoptosis and anti-pyroptosis effects of apple polyphenols extract (APE) on dextran sulfate sodium model group (DSS)-induced acute ulcerative colitis (UC) and the protective effect of APE against acute UC-related neuroinflammation and synapse damage. Forty-three C57BL/6 male mice were randomly divided into a control group (CON), a 3% DSS model group (DSS), a 500 mg/(kg·bw·d) APE group (HAP), and a 125 (LD) or 500 (HD) mg/(kg·bw·d) APE treatment concomitantly with DSS treatment group. The results showed that APE significantly ameliorated DSS-induced acute UC through inhibiting intestinal epithelial cell (IEC) apoptosis and the Caspase-1/Caspase-11-dependent pyroptosis pathway, with increased BCL-2 protein expression and decreased protein levels of NLRP3, ASC, Caspase-1/11, and GSDND. Furthermore, APE significantly reduced acute UC-related neuroinflammation and synapse damage, supported by decreased mRNA levels of hypothalamus Cox-2 and hippocampus Gfap and also increased the mRNA levels of hypothalamus Psd-95. The increased protein expression of ZO-1 and Occludin improved the intestinal barrier integrity and improved the function of goblet cells by upregulating the protein level of MUC-2 and TTF3 accounted for the beneficial effects of APE on UC-associated neuroinflammation. Therefore, APE might be a safe and effective agent for the management of acute UC.
Collapse
|
5
|
Zhang B, Su X, Xie Z, Ding H, Wang T, Xie R, Wen Z. Inositol-Requiring Kinase 1 Regulates Apoptosis via Inducing Endoplasmic Reticulum Stress in Colitis Epithelial Cells. Dig Dis Sci 2021; 66:3015-3025. [PMID: 33043405 DOI: 10.1007/s10620-020-06622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) has been studied as critical factor during occurrence and development of ulcerative colitis (UC). However, the role of ERS in inflamed UC remains unclear. AIMS The purpose of this study was to analyze the role of inositol-requiring kinase 1 (IRE-1), a major regulator of ER, in regulating ERS and cell viability. METHODS In UC mucosa tissue, IRE-1, BiP, XBP-1s, CHOP caspase-12 and GADD34 mRNA were assayed by qRT-PCR. Then, human normal colon epithelial cell line (NCM-460) and colon fibroblast cell line (CCD-33Co) were cultured, and downregulated or upregulated IRE-1 expression. ERS was induced with 100 ng/mL of Interleukin 6 (IL-6). CCK8 assay was performed to analyze cell proliferation. Flow cytometry analysis was conducted to detect the apoptosis. Western blot assay was used to examine ERS markers. RESULTS IRE-1, BiP, XBP-1s, caspase-12 and CHOP mRNA were highly expressed in UC mucosa tissue, and the expression of GADD34 mRNA significantly decreased. These results show that ERS-induced unfolded protein response was enhanced in UC mucosa tissue. In cells, silencing the expression of IRE-1 could suppress cell proliferation and promote apoptosis through activating unfolded protein response, while the over-expression of IRE-1 had the opposite effect. IL-6 could induce ERS and cells apoptosis. Furthermore, we demonstrated that shRNA IRE-1 could enhance the inhibition of IL-6 on cells viability. CONCLUSIONS Inhibition of IRE-1 enhanced unfolded protein response and cells apoptosis and IL-6-induced ERS and suggested that IRE-1 might be a potential target of UC.
Collapse
Affiliation(s)
- Bei Zhang
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - XiaoYan Su
- The Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - ZhengYuan Xie
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hao Ding
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ting Wang
- The Department of Gastroenterology, First Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - RuYi Xie
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - ZhiLi Wen
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
6
|
Effect of Berberine from Coptis chinensis on Apoptosis of Intestinal Epithelial Cells in a Mouse Model of Ulcerative Colitis: Role of Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3784671. [PMID: 32382284 PMCID: PMC7197007 DOI: 10.1155/2020/3784671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to verify the effect of berberine (BBR) on endoplasmic reticulum stress (ERS) and apoptosis of intestinal epithelial cells (IECs) in mice with ulcerative colitis (UC). BALB/c mice were randomly divided into five groups as follows: blank control, model, and low-, medium-, and high-dose BBR. A dextran sodium sulfate- (DSS-) induced model of UC was prepared, and the low-, medium-, and high-dose BBR groups were simultaneously gavaged with a BBR suspension for 7 d. Disease activity index (DAI) was assessed, and tissue damage index (TDI) was assessed from colon samples after the last administration. TUNEL assays were used to detect apoptosis of IECs. Immunohistochemistry and/or real-time PCR were applied to determine the expression of GRP78, caspase-12, and caspase-3. In all BBR treatment groups, clinical symptoms of colitis and histopathological damage were significantly reduced. The high-dose BBR group exhibited particularly pronounced decrease (p < 0.01) in both DAI (0.48 ± 0.36) and TDI (1.62 ± 0.64) relative to the model group (1.50 ± 0.65 and 3.88 ± 0.04, respectively). In colon tissues of the model group, the number of apoptotic IECs was significantly increased; the expression of GRP78, caspase-12, and caspase-3 proteins was significantly increased; and the expression of the GRP78 mRNA was upregulated. In low-, medium-, and high-dose BBR groups, the number of apoptotic IECs was significantly reduced. Moreover, GRP78 and caspase-3 expression levels were significantly decreased in the medium- and high-dose BBR groups, caspase-12 expression was significantly decreased in the high-dose BBR group, and the GRP78 mRNA expression level was significantly decreased in the high-dose BBR group. BBR can effectively reduce the rate of IEC apoptosis in UC mice and alleviate the inflammatory response in the colon. The underlying mechanism seems to involve ERS modulation and inhibition of ERS-mediated activation of the caspase-12/caspase-3 apoptosis signaling pathway.
Collapse
|
7
|
Cao M, Zhang J, Xu H, Lin Z, Chang H, Wang Y, Huang X, Chen X, Wang H, Song Y. Identification and Development of a Novel 4-Gene Immune-Related Signature to Predict Osteosarcoma Prognosis. Front Mol Biosci 2020; 7:608368. [PMID: 33425993 PMCID: PMC7785859 DOI: 10.3389/fmolb.2020.608368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a malignant disease that develops rapidly and is associated with poor prognosis. Immunotherapy may provide new insights into clinical treatment strategies for OS. The purpose of this study was to identify immune-related genes that could predict OS prognosis. The gene expression profiles and clinical data of 84 OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. According to non-negative matrix factorization, two molecular subtypes of immune-related genes, C1 and C2, were acquired, and 597 differentially expressed genes between C1 and C2 were identified. Univariate Cox analysis was performed to get 14 genes associated with survival, and 4 genes (GJA5, APBB1IP, NPC2, and FKBP11) obtained through least absolute shrinkage and selection operator (LASSO)-Cox regression were used to construct a 4-gene signature as a prognostic risk model. The results showed that high FKBP11 expression was correlated with high risk (a risk factor), and that high GJA5, APBB1IP, or NPC2 expression was associated with low risk (protective factors). The testing cohort and entire TARGET cohort were used for internal verification, and the independent GSE21257 cohort was used for external validation. The study suggested that the model we constructed was reliable and performed well in predicting OS risk. The functional enrichment of the signature was studied through gene set enrichment analysis, and it was found that the risk score was related to the immune pathway. In summary, our comprehensive study found that the 4-gene signature could be used to predict OS prognosis, and new biomarkers of great significance for understanding the therapeutic targets of OS were identified.
Collapse
Affiliation(s)
- Mingde Cao
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Junhui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hualiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhujian Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hong Chang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuchen Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xusheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Yancheng Song
| |
Collapse
|
8
|
Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6769789. [PMID: 31139644 PMCID: PMC6500688 DOI: 10.1155/2019/6769789] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Objective Observe the protective effect of chlorogenic acid on dextran sulfate-induced ulcerative colitis in mice and explore the regulation of MAPK/ERK/JNK signaling pathway. Methods Seventy C57BL/6 mice (half males and half females) were randomly divided into 7 groups, 10 in each group: control group (CON group), UC model group (UC group), and sulfasalazine-positive control group (SASP group), chlorogenic acid low dose group (CGA-L group), chlorogenic acid medium dose group (CGA-M group), chlorogenic acid high dose group (CGA-H group), and ERK inhibitor + chlorogenic acid group (E+CGA group). The effects of chlorogenic acid on UC were evaluated by colon mucosa damage index (CMDI), HE staining, immunohistochemistry, ELISA, and Western blot. The relationship between chlorogenic acid and MAPK/ERK/JNK signaling pathway was explored by adding ERK inhibitor. Results The UC models were established successfully by drinking DSS water. Chlorogenic acid reduces DSS-induced colonic mucosal damage, inhibits DSS-induced inflammation, oxidative stress, and apoptosis in colon, and reduces ERK1/2, p -ERK, p38, p-p38, JNK, and p-JNK protein expression. ERK inhibitor U0126 reversed the protective effect of chlorogenic acid on colon tissue. Conclusion Chlorogenic acid can alleviate DSS-induced ulcerative colitis in mice, which can significantly reduce tissue inflammation and apoptosis, and its mechanism is related to the MAPK/ERK/JNK signaling pathway.
Collapse
|