1
|
Zhao S, Li Y, Xu J, Shen L. APOBEC3C is a novel target for the immune treatment of lower-grade gliomas. Neurol Res 2024; 46:227-242. [PMID: 38007705 DOI: 10.1080/01616412.2023.2287340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C (A3C) has been identified as a cancer molecular biomarker in the past decade. However, the practical role of A3C in lower-grade gliomas (LGGs) in improving the clinical outcome remains unclear. This study aims to discuss the function of A3C in immunotherapy in LGGs. METHODS The RNA-Sequencing (RNA-seq) and corresponding clinical data were extracted from UCSC Xena and the results were verified in the Chinese Glioma Genome Atlas (CGGA). Weighted gene co-expression network analysis (WGCNA) was used for screening A3C-related genes. Comprehensive bioinformation analyses were performed and multiple levels of expression, survival rate, and biological functions were assessed to explore the functions of A3C. RESULTS A3C expression was significantly higher in LGGs than in normal tissues but lower than in glioblastoma (GBM), indicating its role as an independent prognosis predictor for LGGs. Twenty-eight A3C-related genes were found with WGCNA for unsupervised clustering analysis and three modification patterns with different outcomes and immune cell infiltration were identified. A3C and the A3C score were also correlated with immune cell infiltration and the expression of immune checkpoints. In addition, the A3C score was correlated with increased sensitivity to chemotherapy. Single-cell RNA (scRNA) analysis indicated that A3C most probably expresses on immune cells, such as T cells, B cells and macrophage. CONCLUSIONS A3C is an immune-related prognostic biomarker in LGGs. Developing drugs to block A3C could enhance the efficiency of immunotherapy and improve disease survival.Abbreviation: A3C: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C; LGGs: lower-grade gliomas; CGGA: Chinese Glioma Genome Atlas; WGCNA: Weighted gene co-expression network analysis; scRNA: Single-cell RNA; HGG: higher-grade glioma; OS: overall survival; TME: tumor microenvironment; KM: Kaplan-Meier; PFI: progression-free interval; IDH: isocitrate dehydrogenase; ROC: receiver operating characteristic; GS: gene significance; MM: module membership; TIMER: Tumor IMmune Estimation Resource; GSVA: gene set variation analysis; ssGSEA: single-sample gene-set enrichment analysis; PCA: principal component analysis; AUC: area under ROC curve; HAVCR2: hepatitis A virus cellular receptor 2; PDCD1: programmed cell death 1; PDCD1LG2: PDCD1 ligand 2; PTPRC: protein tyrosine phosphatase receptor type C; ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma;BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOLCholangiocarcinoma; COADColon adenocarcinoma; DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and Neck squamous cell carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma.
Collapse
Affiliation(s)
- Shufa Zhao
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Yuntao Li
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Liang Shen
- Department of Neurosurgery, The affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Synergistic effects of Rapamycin and Fluorouracil to treat a gastric tumor in a PTEN conditional deletion mouse model. Gastric Cancer 2022; 25:96-106. [PMID: 34370147 DOI: 10.1007/s10120-021-01229-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The tumor suppressor gene phosphatase and tensin homolog (PTEN) in PI3K/Akt/mTOR pathway is essential in inhibiting tumor growth and metastasis. However, whether the mutation of PTEN gene could induce tumorigenesis and impact the treatment of gastric cancer is still unclear. The purpose of the study was to investigate the combined treatment of gastric tumorigenesis using Rapamycin and Fluorouracil (5-Fu) through interfering with the Akt/mTOR pathway in a mouse model with PTEN conditional deletion. Three groups of mice were exposed for 5 days to Rapamycin and 5-Fu separately and together. The gene expression of the Akt/mTOR pathway, the protein expression of caspase-3 and p-Akt, p-S6K and p-4EBP1, and the pathological changes in stomachs were analyzed. Our study demonstrates that the conditional PTEN deletion in the cells of glandular stomach induces hyperplastic gastric tumors in mice. The combined Rapamycin administration with 5-Fu resulted in better outcomes than their separate administration for the treatment of gastric cancer by inhibiting the mTOR signal pathway. Our study indicates that Rapamycin has a synergistic interaction with chemotherapeutic 5-Fu, and demonstrates a potential therapeutic combination treatment on glandular stomach tumor with PTEN functional absence or aberrantly activated Akt/mTOR pathway. It provides important insights into the inhibition of the Akt/mTOR pathway in gastric cancer clinical therapy.
Collapse
|
4
|
Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res 2021; 11:5833-5855. [PMID: 35018228 PMCID: PMC8727805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor suppressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their pathological development. On the basis of a large number of related studies, this study describes in detail the structure, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to provide some directions for experimental research and clinical treatment of tumors.
Collapse
Affiliation(s)
- Qinyi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
5
|
Evodiamine Inhibits Gastric Cancer Cell Proliferation via PTEN-Mediated EGF/PI3K Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5570831. [PMID: 34824590 PMCID: PMC8610660 DOI: 10.1155/2021/5570831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Aims In this study, the pharmacological effects and potential molecular mechanisms of evodiamine in treating gastric cancer (GC) were investigated. Methods GC cells lines of AGS and BGC-823 were treated with evodiamine at various concentrations for different times (24, 48, and 72 h). Inhibition of the proliferation of AGS and BGC-823 cells was assessed using a CCK-8 assay. The morphology of gastric cancer cells was detected by high-content screening (HCS). The apoptosis-inducing effect of evodiamine on AGS and BGC-823 cells was detected by flow cytometric analysis. Cell migration and invasion were detected by Transwell assay. The relative mRNA and protein expression levels of PTEN-mediated EGF/PI3K signaling pathways were investigated via RT-qPCR or western blotting, respectively. Results Evodiamine substantially inhibited AGS and BGC-823 cells proliferation in a dose- and time-dependent manner. Flow cytometric analysis revealed that evodiamine could induce apoptosis of AGS and BGC-823 cells in a dose-dependent manner. In addition, evodiamine inhibited AGS and BGC-823 cell migration and invasion. Mechanistically, the results demonstrated that evodiamine promoted the relative mRNA and protein expression of PTEN and decreased expression of EGF, EGFR, PI3K, AKT, p-AKT, and mTOR. Most importantly, evodiamine could effectively increase the mRNA and protein expression of PTEN and decrease the protein expression of EGF/PI3K pathway, indicating that evodiamine downregulated EGF/PI3K through the activation of PTEN pathway. Conclusion Evodiamine inhibited the directional migration and invasion of GC cells by inhibiting PTEN-mediated EGF/PI3K signaling pathway. These findings revealed that evodiamine might serve as a potential candidate for the treatment or prevention of GC.
Collapse
|
6
|
Li XF, Wu S, Yan Q, Wu YY, Chen H, Yin SQ, Chen X, Wang H, Li J. PTEN Methylation Promotes Inflammation and Activation of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. Front Pharmacol 2021; 12:700373. [PMID: 34305608 PMCID: PMC8296842 DOI: 10.3389/fphar.2021.700373] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by a tumor-like expansion of the synovium and subsequent destruction of adjacent articular cartilage and bone. In our previous work we showed that phosphatase and tension homolog deleted on chromosome 10 (PTEN) contributes to the activation of fibroblast-like synoviocytes (FLS) in adjuvant-induced arthritis (AIA), but the underlying mechanism is not unknown. In this study, we show that PTEN is downregulated while DNA methyltransferase (DNMT)1 is upregulated in FLS from RA patients and a rat model of AIA. DNA methylation of PTEN was increased by administration of tumor necrosis factor (TNF)-α in FLS of RA patients, as determined by chromatin immunoprecipitation and methylation-specific PCR. Treatment with the methylation inhibitor 5-azacytidine suppressed cytokine and chemokine release and FLS activation in vitro and alleviated paw swelling in vivo. PTEN overexpression reduced inflammation and activation of FLS via protein kinase B (AKT) signaling in RA, and intra-articular injection of PTEN-expressing adenovirus into the knee of AIA rats markedly reduced inflammation and paw swelling. Thus, PTEN methylation promotes the inflammation and activation of FLS in the pathogenesis of RA. These findings provide insight into the molecular basis of articular cartilage destruction in RA, and indicate that therapeutic strategies that prevent PTEN methylation may an effective treatment.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Postdoctoral Station of Clinical Medicine of Anhui Medical University, Hefei, China
| | - Sha Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - He Chen
- Departments of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Su-Qin Yin
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
7
|
Lu H, Han X, Ren J, Ren K, Li Z, Zhang Q. Metformin attenuates synergic effect of diabetes mellitus and Helicobacter pylori infection on gastric cancer cells proliferation by suppressing PTEN expression. J Cell Mol Med 2021; 25:4534-4542. [PMID: 33760349 PMCID: PMC8107109 DOI: 10.1111/jcmm.15967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
It has been reported that CagA of Helicobacter pylori reduced PTEN expression by enhancing its promoter methylation. Furthermore, diabetes mellitus (DM) may also promote the methylation status of PTEN, a tumour suppressor gene in gastric cancer (GC). It is intriguing to explore whether DM may strengthen the tumorigenic effect of H pylori (HP) by promoting the methylation of PTEN promoter and whether the administration of metformin may reduce the risk of GC by suppressing the methylation of PTEN promoter. In this study, we enrolled 107 GC patients and grouped them as HP(-)DM(-) group, HP(+)DM(-) group and HP(+)DM(+) group. Bisulphite sequencing PCR evaluated methylation of PTEN promoter. Quantitative real-time PCR, immunohistochemistry and Western blot, immunofluorescence, flow cytometry and MTT assay were performed accordingly. DNA methylation of PTEN promoter was synergistically enhanced in HP(+)DM(+) patients, and the expression of PTEN was suppressed in HP(+)DM(+) patients. Cell apoptosis was decreased in HP(+)DM(+) group. Metformin showed an apparent effect on restoring CagA-induced elevation of PTEN promoter methylation, thus attenuating the PTEN expression. The reduced PTEN level led to increased proliferation and inhibited apoptosis of HGC-27 cells. In this study, we collected GC tumour tissues from GC patients with or without DM/HP to compare their PTEN methylation and expression while testing the effect of metformin on the methylation of PTEN promoter. In summary, our study suggested that DM could strengthen the tumorigenic effect of HP by promoting the PTEN promoter methylation, while metformin reduces GC risk by suppressing PTEN promoter methylation.
Collapse
Affiliation(s)
- Huibin Lu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanhui Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Clerici SP, Oliveira PFDS, Akagi EM, Cordeiro HG, Azevedo-Martins JM, Faria AVDS, Ferreira-Halder CV. A comprehensive review on the role of protein tyrosine phosphatases in gastric cancer development and progression. Biol Chem 2021; 402:663-674. [PMID: 33544466 DOI: 10.1515/hsz-2020-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/09/2022]
Abstract
The main post-translational reversible modulation of proteins is phosphorylation and dephosphorylation, catalyzed by protein kinases (PKs) and protein phosphatases (PPs) which is crucial for homeostasis. Imbalance in this crosstalk can be related to diseases, including cancer. Plenty of evidence indicates that protein tyrosine phosphatases (PTPs) can act as tumor suppressors and tumor promoters. In gastric cancer (GC), there is a lack of understanding of the molecular aspects behind the tumoral onset and progression. Here we describe several members of the PTP family related to gastric carcinogenesis. We discuss the associated molecular mechanisms which support the down or up modulation of different PTPs. We emphasize the Helicobacter pylori (H. pylori) virulence which is in part associated with the activation of PTP receptors. We also explore the involvement of intracellular redox state in response to H. pylori infection. In addition, some PTP members are under influence by genetic mutations, epigenetics mechanisms, and miRNA modulation. The understanding of multiple aspects of PTPs in GC may provide new targets and perspectives on drug development.
Collapse
Affiliation(s)
- Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Rua Monteiro Lobato 255, 13083-862Campinas, São Paulo, Brazil
| | | | - Erica Mie Akagi
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Rua Monteiro Lobato 255, 13083-862Campinas, São Paulo, Brazil
| | - Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Rua Monteiro Lobato 255, 13083-862Campinas, São Paulo, Brazil
| | - Jordana Maria Azevedo-Martins
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Rua Monteiro Lobato 255, 13083-862Campinas, São Paulo, Brazil
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Rua Monteiro Lobato 255, 13083-862Campinas, São Paulo, Brazil
| | - Carmen Veríssima Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Rua Monteiro Lobato 255, 13083-862Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
De Souza ALPB. Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Transl Gastroenterol Hepatol 2020; 5:48. [PMID: 33073043 DOI: 10.21037/tgh.2019.12.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Although researchers have been trying to harness the immune system for over 100 years, the advent of immune checkpoint blockers (ICB) marks an era of significant clinical outcomes in various metastatic solid tumors, characterized by complete and durable responses. ICBs are monoclonal antibodies that target either of a pair of transmembrane molecules in tumors or T-cells involved in immune evasion. Currently 2 ICBs targeting the checkpoint program death 1 (PD-1), nivolumab and pembrolizumab, and one cytotoxic lymphocyte antigen-4 (CTLA-4) inhibitor (ipilimumab) are approved in gastrointestinal malignancies. We review herein the current evidence on predictive biomarkers for ICB response in gastrointestinal tumors. A review of literature based on the National Cancer Institute list of FDA-approved drugs for neoplasms and FDA-approved therapies at the FDA website was performed. An initial literature review was based on the American Association for Clinical Research meeting 2019, the American Society of Clinical Oncology meeting 2019 and the European Society of Medical Oncology 2019 proceedings. A systematic search of PubMed was performed involving MeSH browser terms such as biomarkers, immunotherapy, gastrointestinal diseases and neoplasms. When appropriate, American and British terms were used in the search. The most relevant predictor of response to ICBs is microsatellite instability (MSI) and the data is strongest for colorectal cancer. At least 3 prospective trials show evidence of PD-L1 as a predictive biomarker for ICB response in gastroesophageal malignancies. At least one prospective trial has described tumor mutational burden high (TMB-H), independent of MSI, as predictive of response in anal and biliary tract carcinomas. DNA Polymerase Epsilon (POLE) or delta (POL-D) mutations have been implicated in a subset of MSS colorectal cancer with TMB-H but this biomarker requires prospective validation. There is evolving data based on retrospective observations that gene alterations predicting acquired resistance and hyper-progression. Ongoing clinical research is assessing the role of the human microbiome and RNA-editing complex mutations as predictive biomarkers of response to ICBs. MSI has the strongest predictive power among current biomarkers for ICB response in gastrointestinal cancers. Data continue to accumulate from ongoing clinical trials and new biomarkers are emerging from pre-clinical studies, suggesting that drug combinations targeting pathways complimentary to the PD-1/PD-L1 axis inhibition will define a robust field of clinical research.
Collapse
|
10
|
Pathways of Gastric Carcinogenesis, Helicobacter pylori Virulence and Interactions with Antioxidant Systems, Vitamin C and Phytochemicals. Int J Mol Sci 2020; 21:ijms21176451. [PMID: 32899442 PMCID: PMC7503565 DOI: 10.3390/ijms21176451] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a class one carcinogen which causes chronic atrophic gastritis, gastric intestinal metaplasia, dysplasia and adenocarcinoma. The mechanisms by which H. pylori interacts with other risk and protective factors, particularly vitamin C in gastric carcinogenesis are complex. Gastric carcinogenesis includes metabolic, environmental, epigenetic, genomic, infective, inflammatory and oncogenic pathways. The molecular classification of gastric cancer subtypes has revolutionized the understanding of gastric carcinogenesis. This includes the tumour microenvironment, germline mutations, and the role of Helicobacter pylori bacteria, Epstein Barr virus and epigenetics in somatic mutations. There is evidence that ascorbic acid, phytochemicals and endogenous antioxidant systems can modify the risk of gastric cancer. Gastric juice ascorbate levels depend on dietary intake of ascorbic acid but can also be decreased by H. pylori infection, H. pylori CagA secretion, tobacco smoking, achlorhydria and chronic atrophic gastritis. Ascorbic acid may be protective against gastric cancer by its antioxidant effect in gastric cytoprotection, regenerating active vitamin E and glutathione, inhibiting endogenous N-nitrosation, reducing toxic effects of ingested nitrosodimethylamines and heterocyclic amines, and preventing H. pylori infection. The effectiveness of such cytoprotection is related to H. pylori strain virulence, particularly CagA expression. The role of vitamin C in epigenetic reprogramming in gastric cancer is still evolving. Other factors in conjunction with vitamin C also play a role in gastric carcinogenesis. Eradication of H. pylori may lead to recovery of vitamin C secretion by gastric epithelium and enable regression of premalignant gastric lesions, thereby interrupting the Correa cascade of gastric carcinogenesis.
Collapse
|
11
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|
12
|
Zhang H, Liao Y, Zhang H, Wu J, Zheng D, Chen Z. Cytotoxin-associated gene A increases carcinogenicity of helicobacter pylori in colorectal adenoma. Int J Biol Markers 2020; 35:19-25. [PMID: 31971064 DOI: 10.1177/1724600819877193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the correlation of Helicobacter pylori (Hp) infection with disease risk and severity of colorectal adenoma, also to explore the association of cytotoxin-associated gene A (CagA) positive (CagA+)-Hp infection with gastrin and ki-67 expressions in colorectal adenoma patients. METHODS There were 1000 colorectal adenoma patients and 1500 controls consecutively enrolled, then Hp infection status was determined by 14C urea breath test and rapid urease test. Also, serum CagA expression and gastrin expression of colorectal adenoma patients were determined by enzyme-linked immunosorbent assay. Ki-67 expression in adenoma tissue of colorectal adenoma patients was assessed using immunohistochemistry. RESULTS Hp+ rate in colorectal adenoma patients (623 (62.3%)) was more elevated than that in controls (814 (54.3%)). Multivariate logistic regression model analysis disclosed that Hp+ was an independent risk factor for colorectal adenoma. Additionally, Hp+ was positively associated with tumor size and high-grade intraepithelial neoplasia in colorectal adenoma patients. Also, serum gastrin expression and intratumoral ki-67 expression were higher in Hp+ CagA+ patients and Hp+ CagA- patients compared to Hp- patients, and they were also higher in Hp+ CagA+ patients compared to Hp+ CagA- patients. CONCLUSION Hp infection positively associates with higher disease risk and worse disease conditions of colorectal adenoma, and CagA enhances the carcinogenicity of Hp in colorectal adenoma.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Yusheng Liao
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Zhitao Chen
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| |
Collapse
|
13
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
14
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Benli Yavuz B, Koç M, Kozacıoğlu S, Kanyılmaz G, Aktan M. Prognostic importance of PTEN, EGFR, HER-2, and IGF-1R in gastric cancer patients treated with postoperative chemoradiation. Turk J Med Sci 2019; 49:1025-1032. [PMID: 31318186 PMCID: PMC7018360 DOI: 10.3906/sag-1802-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background/aim This study aimed to describe the prognostic importance of epidermal growth factor (EGFR), phosphatase and tensin homolog (PTEN), human EGF receptor-2 (HER-2), and insulin-like growth factor 1 receptor (IGF-1R) in gastric cancer patients treated with postoperative chemoradiation therapy. Materials and methods Sixty-nine patients treated with adjuvant chemoradiation therapy were retrospectively evaluated. Tumor samples were stained immunohistochemically. Results All patients were treated with 3D conformal radiation therapy with concomitant and adjuvant chemotherapy. Perineural invasion (PNI) (P = 0.042), prechemoradiation therapy albumin levels below 3.5 mg/dL (P = 0.011), and EGFR positivity (P = 0.008) had negative effects on overall survival (OS). The median OS was 26 months for patients with PNI (+), 34.9 months for those with PNI (–), 19.5 months for those with albumin levels below 3.5 mg/dL, and 33.2 months for those with albumin levels above 3.5 mg/dL. IGF-1R (+) (P = 0.035) and history of cigarette smoking (P = 0.033) were observed to have a statistically significantly negative effect on disease-free survival (DFS). The median DFS was 29.2 months for IGF-1R (+) patients, 37.9 months for those with IGF-1R (-), and 26.3 and 40.59 months for smokers and nonsmokers, respectively. Conclusion IGF-1R and EGFR may be used for patient selection in future prospective studies that evaluate the prognostic importance of these receptors.
Collapse
Affiliation(s)
- Berrin Benli Yavuz
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Koç
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sümeyye Kozacıoğlu
- Department of Pathology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Gül Kanyılmaz
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Meryem Aktan
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
16
|
Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8:pathogens8010023. [PMID: 30781778 PMCID: PMC6471032 DOI: 10.3390/pathogens8010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is ranked fifth in cancer list and has the third highest mortality rate. Helicobacter pylori is a class I carcinogen and a predominant etiological factor of gastric cancer. H. pylori infection may induce carcinogenesis via epigenetic alterations in the promoter region of various genes. H. pylori is known to induce hypermethylation-silencing of several tumor suppressor genes in H. pylori-infected cancerous and H. pylori-infected non-cancerous gastric mucosae. This article presents a review of the published literature mainly from the last year 15 years. The topic focuses on H. pylori-induced DNA methylation linked to gastric cancer development. The authors have used MeSH terms "Helicobacter pylori" with "epigenetic," "DNA methylation," in combination with "gastric inflammation", gastritis" and "gastric cancer" to search SCOPUS, PubMed, Ovid, and Web of Science databases. The success of epigenetic drugs such as de-methylating agents in the treatment of certain cancers has led towards new prospects that similar approaches could also be applied against gastric cancer. However, it is very important to understand the role of all the genes that have already been linked to H. pylori-induced DNA methylation in order to in order to evaluate the potential benefits of epigenetic drugs.
Collapse
|