1
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Pathak E, Mishra R. Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas. J Endocrinol Invest 2022; 45:537-550. [PMID: 34669152 PMCID: PMC8527307 DOI: 10.1007/s40618-021-01693-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell's Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients.
Collapse
Affiliation(s)
| | - R Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Chimenz R, Chirico V, Basile P, Carcione A, Conti G, Monardo P, Lacquaniti A. HMGB-1 and TGFβ-1 highlight immuno-inflammatory and fibrotic processes before proteinuria onset in pediatric patients with Alport syndrome. J Nephrol 2021; 34:1915-1924. [PMID: 33761123 DOI: 10.1007/s40620-021-01015-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Alport syndrome (ALP) is a rare genetic condition characterized by progressive involvement of the basal membranes and renal dysfunction. The purpose of the study was to evaluate urinary (u) and serum (s) levels of tumor growth factor (TGF)-beta(β) and high mobility group box (HMGB)-1 in ALP patients with normal renal function, albuminuria and proteinuria. METHODS A prospective, single-center study was performed with a follow-up period of 12 months, enrolling 11 pediatric ALP patients and 10 healthy subjects (HS). Normal values of serum creatinine, albuminuria and proteinuria, as well as unaltered estimated glomerular filtration rate (eGFR) were required at enrollment. RESULTS ALP patients had significantly higher levels of serum and urinary HMGB1 compared to HS. The same trend was observed for TGF-β1, with higher values in ALP patients than in HS. HMGB1 and TGF-β1 correlated with each other and with markers of renal function and damage. Urinary biomarkers did not correlate with eGFR, whereas sHMGB1 and sTGF-β1 were negatively related to filtration rate (r: - 0.66; p = 0.02, r: - 0.96; p < 0.0001, respectively). Using proteinuria as a dependent variable in a multiple regression model, only the association with sTGF-β1 (β = 0.91, p < 0.0001) remained significant. CONCLUSIONS High levels of HMGB1 and TGF-β1 characterized ALP patients with normal renal function, highlighting the subclinical pro-fibrotic and inflammatory mechanisms triggered before the onset of proteinuria. Further studies are needed to evaluate the role of HMGB1 and TGFβ-1 in ALP patients.
Collapse
Affiliation(s)
- R Chimenz
- Pediatric Nephrology and Dialysis Unit, University Hospital "G. Martino", Messina, Italy.
| | - V Chirico
- Pediatric Nephrology and Dialysis Unit, University Hospital "G. Martino", Messina, Italy
| | - P Basile
- Pediatric Nephrology and Dialysis Unit, University Hospital "G. Martino", Messina, Italy
| | - A Carcione
- Pediatric Nephrology and Dialysis Unit, University Hospital "G. Martino", Messina, Italy
| | - G Conti
- Pediatric Nephrology and Dialysis Unit, University Hospital "G. Martino", Messina, Italy
| | - P Monardo
- Nephrology and Dialysis Unit, Papardo Hospital, Messina, Italy
| | - A Lacquaniti
- Nephrology and Dialysis Unit, Papardo Hospital, Messina, Italy
| |
Collapse
|
4
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|