1
|
González-Sánchez GD, Granados-López AJ, López-Hernández Y, Robles MJG, López JA. miRNAs as Interconnectors between Obesity and Cancer. Noncoding RNA 2024; 10:24. [PMID: 38668382 PMCID: PMC11055034 DOI: 10.3390/ncrna10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs.
Collapse
Affiliation(s)
- Grecia Denisse González-Sánchez
- Doctorate in Biosciences, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos C.P. 47620, Mexico;
| | - Angelica Judith Granados-López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Yamilé López-Hernández
- Laboratory of Proteomics and Metabolomics, Cátedras-CONACYT, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Mayra Judith García Robles
- Biotechnology Department of the Polytechnic, University of Zacatecas, Fresnillo, Zacatecas C.P. 99059, Mexico
| | - Jesús Adrián López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| |
Collapse
|
2
|
Wang S, Shao W, Gao Y, Zhao H, Du D. Diagnostic and Prognostic Significance of miR-675-3p in Patients With Atherosclerosis. Clin Appl Thromb Hemost 2021; 27:10760296211024754. [PMID: 34320871 PMCID: PMC8327005 DOI: 10.1177/10760296211024754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In recent years, a rising number of studies have confirmed that microRNA (miRNA)
plays a prominent role in the early diagnosis and prognostic value assessment of
cardiovascular diseases. The current study was conducted to examine the
expression of miR-675-3p in atherosclerosis (AS) patients and to evaluate its
clinical diagnosis and prognostic value. 110 AS patients and 70 healthy controls
were included in the study. Serum miR-675-3p levels were detected by
quantitative real-time PCR (qRT-PCR). The clinical diagnostic significance of
serum miR-675-3p in AS patients were investigated by the receiver operating
characteristic (ROC) curve. The correlation between miRNA and carotid
intima-media thickness (CIMT) was analyzed by the Spearman correlation
coefficient. The prognostic significance of serum miR-675-3p was evaluated by
the Kaplan-Meier method and Cox regression analysis. The patient’s serum
miR-675-3p was significantly increased than the healthy individuals
(P < 0.05). An increase of carotid intima-media
thickness (CIMT) was positively correlated with the promotion of serum
miR-675-3p levels. The area under the ROC curve (AUC) was 0.918, with high
sensitivity and specificity. miR-675-3p is a key independent predictor of
cardiovascular adverse events in AS patients (HR = 5.375, 95%CI = 1.590-18.170,
P = 0.007), and patients with elevated miR-675-3p were more
likely to have cardiovascular adverse events (log-rank P =
0.030). Increased miR-675-3p can be used as a potential marker for the diagnosis
of AS, and was associated with the poor prognosis of AS.
Collapse
Affiliation(s)
- Shuangquan Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Wei Shao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yang Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Hongwei Zhao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Deyong Du
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
3
|
miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma. Int J Mol Sci 2021; 22:ijms22073640. [PMID: 33807389 PMCID: PMC8037581 DOI: 10.3390/ijms22073640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a pivotal role in many aspects of cell biology, including cancer development. Within esophageal cancer, miRNAs have been proved to be involved in all phases of carcinogenesis, from initiation to metastatic spread. Several miRNAs have been found to be dysregulated in esophageal premalignant lesions, namely Barrett’s esophagus, Barrett’s dysplasia, and squamous dysplasia. Furthermore, numerous studies have investigated the alteration in the expression levels of many oncomiRNAs and tumor suppressor miRNAs in esophageal squamous cell carcinoma and esophageal adenocarcinoma, thus proving how miRNAs are able modulate crucial regulatory pathways of cancer development. Considering these findings, miRNAs may have a role not only as a diagnostic and prognostic tool, but also as predictive biomarker of response to anti-cancer therapies and as potential therapeutic targets. This review aims to summarize several studies on the matter, focusing on the possible diagnostic–therapeutic implications.
Collapse
|
4
|
Zhai X, Wu Y, Zhang D, Li H, Chong T, Zhao J. MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis. J Bioenerg Biomembr 2021; 53:191-202. [PMID: 33686550 DOI: 10.1007/s10863-021-09888-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common renal malignancies in the urinary system. Numerous studies have demonstrated that miRNAs can regulate tumorigenesis and progression. This study aims to investigate the role and regulatory mechanism of miR-6838-5p in RCC. Our study confirmed that miR-6838-5p was upregulated in human RCC tissues (30/42, 77.43%, P < 0.01) and RCC cell lines (P < 0.05) compared to adjacent non-neoplastic tissues and normal renal epithelial cells. In vitro, overexpression of miR-6838-5p enhanced cell proliferation and invasion in human RCC cell lines (ACHN and 786-O), which were detected by CCK-8, Transwell and Colony formation assays (P < 0.05), and knockdown of miR-6838-5p suppressed cell proliferation and invasion (P < 0.05). Results of Bioinformatics analysis combined with Dual-luciferase reporter gene assay demonstrated that miR-6838-5p could bind to Cyclin D binding myb-like transcription factor 1 (DMTF1). In addition, RT-qPCR and Western blotting confirmed that DMTF1 was downregulated in RCC tissues and cell lines. Meanwhile, it was demonstrated that overexpression of miR-6838-5p inhibited DMTF1 level in ACHN cells. Next, we confirmed that DMTF1 overexpression reversed the inhibitory effects of overexpression of miR-6838-5p on phosphatase and tensin homolog (PTEN), tumor protein 53(p53), murine double minute 2 (MDM2) and alternative reading frame (ARF) protein levels in the ARF-p53 signaling pathway. In conclusion, our research showed that miR-6838-5p enhanced the proliferation and invasion of RCC cells by inhibiting the DMTF1/ARF-p53 axis.
Collapse
Affiliation(s)
- Xiaoqiang Zhai
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yan Wu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Dong Zhang
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Zhao
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Zhao CC, Guo H, Wang Y, Li JH. Comprehensive upstream and downstream regulatory analyses identify miR-675-3p as a potential prognostic biomarker in melanoma. Hum Cell 2021; 34:654-666. [PMID: 33400243 PMCID: PMC7900067 DOI: 10.1007/s13577-020-00473-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
This study assessed miR-675-3p-related regulatory mechanisms in melanoma and the clinical relevance of such regulatory activities. We downloaded miRNA mature strand expression RNA-Seq, phenotypic, and DNA methylation data pertaining to the TCGA Melanoma cohort. Differentially expressed miRNAs (DEMs) between metastatic and primary melanoma patient tissues were then identified, and miR-675-3p expression in melanoma patient peripheral blood was confirmed using the GSE20994 GEO dataset, while its expression in melanoma cell lines was evaluated via qRT-RCR. The clinical and prognostic implications of miR-675-3p in melanoma were assessed, and miR-675-3p target genes were identified using bioinformatics tools. Functional roles of this miRNA were explored via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. We identified 3 and 22 miRNAs that were up- and downregulated, respectively, in metastatic melanoma samples relative to primary melanoma samples. Upregulation of miR-675-3p was associated with poorer overall patient survival, tumor histologic grade, and Clark's level. Consistently, miR-675-3p was also overexpressed in the peripheral blood of melanoma patients relative to healthy controls, and in melanoma cell lines relative to control cells. Gene regulatory networks indicated that 32 transcription factors control miR-675-3p expression, and that it, in turn, regulates 10 target genes. KEGG analyses indicated that these genes were associated with cell cycle, transcriptional misregulation in cancer, TGF-beta signaling, and HIF-1 signaling pathways. Gain-of-function assays revealed that miR-675-3p could promote cell proliferation via accelerating cell cycle progression. Western blotting results indicated that miR-675-3p could active TGF-beta and HIF-1 signaling. Through upstream and downstream analyses of miR-675-3p-related regulatory activity, we confirmed that this miRNA participates in key melanoma-related processes and offers value as a prognostic biomarker in melanoma patients.
Collapse
Affiliation(s)
- Cai-Chou Zhao
- Department of Dermatology, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping Distinct, Shenyang, 110001, Liaoning, China
| | - Hao Guo
- Department of Dermatology, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping Distinct, Shenyang, 110001, Liaoning, China
| | - Ying Wang
- Department of Dermatology, Shengjing Hospital of China Medical University, Heping District, Shenyang, 110004, Liaoning, China
| | - Jiu-Hong Li
- Department of Dermatology, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping Distinct, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
6
|
Li J, Shi K, Xu T, Hu J, Li T, Li G, Chen K, Li D, Inoue K, Sui G. Mechanisms regulating DMTF1β/γ expression and their functional interplay with DMTF1α. Int J Oncol 2020; 58:20-32. [PMID: 33367929 PMCID: PMC7721083 DOI: 10.3892/ijo.2020.5146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
The cyclin D binding myb-like transcription factor 1 (DMTF1), a haplo-insufficient tumor suppressor gene, has 3 alternatively spliced mRNA isoforms encoding DMTF1α, β and γ proteins. Previous studies have indicated a tumor suppressive role of DMTF1α and the oncogenic activity of DMTF1β, while the function of DMTF1γ remains largely undetermined. In the present study, the mechanisms regulating DMTF1 isoform expression were investigated and the functional interplay of DMTF1β and γ with DMTF1α was characterized. It was found that specific regions of DMTF1β and γ transcripts can impair their mRNA integrity or stability, and thus reduce protein expression levels. Additionally, DMTF1β and γ proteins exhibited a reduced stability compared to DMTF1α and all 3 DMTF1 isoforms were localized in the nuclei. Two basic residues, K52 and R53, in the DMTF1 isoforms determined their nuclear localization. Importantly, both DMTF1β and γ could associate with DMTF1α and antagonize its transactivation of the ARF promoter. Consistently, the ratios of both DMTF1β/α and γ/α were significantly associated with a poor prognoses of breast cancer patients, suggesting oncogenic roles of DMTF1β and γ isoforms in breast cancer development.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Ke Shi
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Tianqi Xu
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Jingru Hu
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Tianxin Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Guangyue Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Kuida Chen
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Dangdang Li
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Kazushi Inoue
- Department of Pathology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston‑Salem, NC 27157, USA
| | - Guangchao Sui
- Key Laboratory of Saline‑Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
7
|
Wang C, Jiang X, Li X, Song S, Meng Q, Wang L, Lu Y, Xin X, Pu H, Gui X, Li T, Lu D. Long noncoding RNA HULC accelerates the growth of human liver cancer stem cells by upregulating CyclinD1 through miR675-PKM2 pathway via autophagy. Stem Cell Res Ther 2020; 11:8. [PMID: 31900225 PMCID: PMC6942366 DOI: 10.1186/s13287-019-1528-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The functions of HULC have been demonstrated in several cancers. However, its mechanism has not been elucidated in human liver cancer stem cells. METHODS Liver cancer stem cells were isolated from Huh7 cells; gene infection and tumorigenesis test in vitro and in vivo were performed. RESULTS We demonstrate that HULC promotes growth of liver cancer stem cells in vitro and in vivo. Mechanistically, HULC enhances the expression of Sirt1 dependent on miR675 and then induces the cellular autophagy through Sirt1. HULC enhances CyclinD1 and thereby increases pRB and inhibited P21 WAF1/CIP 1 via autophagy-miR675-PKM2 pathway in human liver cancer stem cells. Ultimately, our results demonstrate that CyclinD1 is required for the oncogenic functions of HULC in liver cancer stem cells. CONCLUSIONS It reveals the key molecular signaling pathways for HULC and provides important basic information for finding effective tumor therapeutic targets based on HULC.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuyu Meng
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoru Xin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
9
|
Qian Z, Gong L, Mou Y, Han Y, Zheng S. MicroRNA‑203a‑3p is a candidate tumor suppressor that targets thrombospondin 2 in colorectal carcinoma. Oncol Rep 2019; 42:1825-1832. [PMID: 31545460 PMCID: PMC6775819 DOI: 10.3892/or.2019.7310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the role of miR-203a-3p in colorectal cancer (CRC) and identify the target gene of microRNA (miR)-203a-3p. A total of 59 sets of cancer tissues and corresponding adjacent non-tumor tissues were collected from CRC patients (aged 31–78 years) between October 2016 and May 2017. Total RNA extraction and reverse transcription-quantitative polymerase chain reaction analysis, transfection assay, and Transwell and apoptosis assays, western blot analysis, a luciferase reporter assay and immunohistochemistry were performed. miR-203a-3p was found to be significantly downregulated in CRC tissues compared with adjacent normal tissues. The overexpression of miR-203a-3p was shown to inhibit the invasion and migration of human CRC SW480 and HT29 cells, and increase their apoptosis rates. Furthermore, miR-203a-3p downregulated the expression of thrombospondin 2 (THBS2) in SW480 and HT29 cells. It was also experimentally demonstrated that miR-203a-3p binds to the 3′-untranslated region of THBS2, downregulating THBS2 expression and thereby inhibiting CRC progression and metastasis. The expression of miR-203a-3p, which serves a tumor-suppressive role, in CRC tissues was significantly downregulated. As miR-203a-3p was determined to target THBS2 to inhibit CRC progression and metastasis; thus, miR-203a-3p may be considered as a potential novel approach to treating CRC.
Collapse
Affiliation(s)
- Zhenyuan Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Lijie Gong
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yiping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Han
- Clinical Research Institute of Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shusen Zheng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|