1
|
Tang J, Tang Y, Lin P, Zheng J, Li Z, Zhang Y. Integrative analysis of circRNA networks in postoperative cognitive dysfunction. Int J Neurosci 2024:1-33. [PMID: 38261527 DOI: 10.1080/00207454.2024.2309473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE In the quest to decipher the molecular intricacies of Postoperative Cognitive Dysfunction (POCD), this study focused on circular RNA (circRNA) and their regulatory networks. MATERIALS AND METHODS Analyzing the Gene Expression Omnibus Series (GSE) 147277 dataset, we pinpointed 10 differentially expressed circRNAs linked to POCD. RESULTS The ensuing competing endogenous RNA (ceRNA) network, featuring pivotal players like Homo sapiens(hsa)_circ_0003424 and hsa-miR-193b-5p, provided a comprehensive understanding of the molecular players at play in POCD. CONCLUSION Additionally, the Protein-Protein Interaction (PPI) network spotlighted 10 core Hub genes, including phosphatase and tensin homolog (PTEN) and signal transducer and activator of transcription 3(STAT3), shedding light on potential therapeutic targets.
Collapse
Affiliation(s)
- Jian Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Yanhong Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Peimin Lin
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Zhengfen Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
2
|
Wang N, Lan G, Zhu Q, Chen H, Huang J, Meng Q, Shen Z, Liang S, Wu X, Luo L, Ye R, Chen J, Tan S, Xing H, Shao Y, Ruan Y, Lin M. HIV Epidemiology, Care, and Treatment Outcomes Among Student and Nonstudent Youths Living With HIV in Southwest China Between 1996 and 2019: Historical Cohort Study. JMIR Public Health Surveill 2023; 9:e38881. [PMID: 36826980 PMCID: PMC10007008 DOI: 10.2196/38881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nearly one-third of new HIV infections occurred among youth in 2019 worldwide. Previous studies suggested that student youths living with HIV and nonstudent youths living with HIV might differ in some risk factors, transmission routes, HIV care, and disease outcomes. OBJECTIVE This study aimed to compare the HIV epidemic, disease outcomes, and access to care among student and nonstudent youths living with HIV aged 16 to 25 years in Guangxi, China. METHODS We performed a historical cohort study by extracting data on all HIV or AIDS cases aged 16 to 25 years in Guangxi, China, during 1996-2019 from the Chinese Comprehensive Response Information Management System of HIV or AIDS. We conducted analyses to assess possible differences in demographic and behavioral characteristics, HIV care, and disease outcomes between student and nonstudent youths living with HIV. Multivariate Cox regression was used to assess differences in mortality and virologic failure between student and nonstudent cases. RESULTS A total of 13,839 youths aged 16 to 25 years were infected with HIV during 1996-2019. Among them, 10,202 cases were infected through sexual contact, most of whom were men (n=5507, 54%); 868 (8.5%) were students, and 9334 (91.5%) were not students. The number of student youths living with HIV was lower before 2006 but gradually increased from 2007 to 2019. In contrast, the nonstudent cases increased rapidly in 2005, then gradually declined after 2012. Student cases were mainly infected through homosexual contact (n=614, 70.7% vs n=1447, 15.5%; P<.001), while nonstudent cases were more likely to be infected through heterosexual contact (n=7887, 84.5% vs n=254, 29.3%; P<.001). Moreover, nonstudent cases had a significantly lower CD4 count than student cases at the time of HIV diagnosis (332 vs 362 cells/μL; P<.001). Nonstudents also had a delayed antiretroviral therapy (ART) initiation compared to students (93 days vs 22 days; P<.001). Furthermore, the mortality rate of 0.4 and 1.0 deaths per 100 person-years were recorded for student and nonstudent youths with HIV, respectively. Overall, the mortality risk in nonstudent cases was 2.3 times that of student cases (adjusted hazard ratio [AHR] 2.3, 95% CI 1.2-4.2; P=.008). The virologic failure rate was 2.3 and 2.6 per 100 person-years among student and nonstudent youths living with HIV, respectively. Nonstudent cases had double the risk of virologic failure compared to student cases (AHR 1.9, 95% CI 1.3-2.6; P<.001). CONCLUSIONS Nonstudent youths living with HIV might face a low CD4 count at the time of HIV diagnosis, delayed ART initiation, and increased risk of death and virologic failure. Thus, HIV prevention and interventions should target youths who dropped out of school early to encourage safe sex and HIV screening, remove barriers to HIV care, and promote early ART initiation to curb the HIV epidemic among youths.
Collapse
Affiliation(s)
- Na Wang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China.,Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Qiuying Zhu
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Jinghua Huang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Qin Meng
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Zhiyong Shen
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Xiuling Wu
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Liuhong Luo
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Rongyi Ye
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Jinli Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yuhua Ruan
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Mei Lin
- Guangxi Key Laboratory of Major Infectious Disease Prevention Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, China
| |
Collapse
|
3
|
Yazit NAA, Juliana N, Kadiman S, Hafidz KM, Mohd Fahmi Teng NI, Abdul Hamid N, Effendy N, Azmani S, Abu IF, Aziz NASA, Das S. Microarray Profiling of Differentially Expressed Genes in Coronary Artery Bypass Grafts of High-Risk Patients with Postoperative Cognitive Dysfunctions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1457. [PMID: 36674212 PMCID: PMC9859359 DOI: 10.3390/ijerph20021457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is cognitive decline after surgery. The authors hypothesized that gene-level changes could be involved in the pathogenesis of POCD. The present study evaluated the incidence of POCD and its associated differentially expressed genes. This was a prospective cohort study conducted on high-risk coronary artery bypass graft patients aged 40 to 75 years. POCD classification was based on a one standard deviation decline in the postoperative scores compared to the preoperative scores. The differentially expressed genes were identified using microarray analysis and validated using quantitative RT-PCR. Forty-six patients were recruited and completed the study. The incidence of POCD was identified using a set of neurocognitive assessments and found to be at 17% in these high-risk CABG patients. Six samples were selected for the gene expression analyses (3 non-POCD and 3 POCD samples). The findings showed five differentially expressed genes in the POCD group compared to the non-POCD group. The upregulated gene was ERFE, whereas the downregulated genes were KIR2DS2, KIR2DS3, KIR3DL2, and LIM2. According to the results, the gene expression profiles of POCD can be used to find potential proteins for POCD diagnostic and predictive biomarkers. Understanding the molecular mechanism of POCD development will further lead to early detection and intervention to reduce the severity of POCD, and hence, reduce the mortality and morbidity rate due to the condition.
Collapse
Affiliation(s)
- Noor Anisah Abu Yazit
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Norsham Juliana
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Suhaini Kadiman
- Anaesthesia and Intensive Care Unit, National Heart Institute, Kuala Lumpur 50400, Malaysia
| | | | | | - Nazefah Abdul Hamid
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Nadia Effendy
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sahar Azmani
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia
| | | | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
4
|
Piscopo P, Manzini V, Rivabene R, Crestini A, Le Pera L, Pizzi E, Veroni C, Talarico G, Peconi M, Castellano AE, D’Alessio C, Bruno G, Corbo M, Vanacore N, Lacorte E. A Plasma Circular RNA Profile Differentiates Subjects with Alzheimer's Disease and Mild Cognitive Impairment from Healthy Controls. Int J Mol Sci 2022; 23:ijms232113232. [PMID: 36362022 PMCID: PMC9658433 DOI: 10.3390/ijms232113232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The most frequently used biomarkers to support the diagnosis of Alzheimer’s Disease (AD) are Aβ42, total-Tau, and phospho-tau protein levels in CSF. Moreover, magnetic resonance imaging is used to assess hippocampal atrophy, 18F-FDG PET to identify abnormal brain metabolism, and PET imaging for amyloid deposition. These tests are rather complex and invasive and not easily applicable to clinical practice. Circulating non-coding RNAs, which are inherently stable and easy to manage, have been reported as promising biomarkers for central nervous system conditions. Recently, circular RNAs (circRNAs) as a novel class of ncRNAs have gained attention. We carried out a pilot study on five participants with AD and five healthy controls (HC) investigating circRNAs by Arraystar Human Circular RNA Microarray V2.0. Among them, 26 circRNAs were differentially expressed (FC ≥ 1.5, p < 0.05) in participants with AD compared to HC. From a top 10 of differentially expressed circRNAs, a validation study was carried out on four up-regulated (hsa_circRNA_050263, hsa_circRNA_403959, hsa_circRNA_003022, hsa_circRNA_100837) and two down-regulated (hsa_circRNA_102049, hsa_circRNA_102619) circRNAs in a larger population. Moreover, five subjects with mild cognitive impairment (MCI) were investigated. The analysis confirmed the upregulation of hsa_circRNA_050263, hsa_circRNA_403959, and hsa_circRNA_003022 both in subjects with AD and in MCI compared to HCs. We also investigated all microRNAs potentially interacting with the studied circRNAs. The GO enrichment analysis shows they are involved in the development of the nervous system, and in the cellular response to nerve growth factor stimuli, protein phosphorylation, apoptotic processes, and inflammation pathways, all of which are processes related to the pathology of AD.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
- Correspondence:
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
- EBRI Rita Levi-Montalcini Foundation, 00161 Rome, RM, Italy
| | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Loredana Le Pera
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Elisabetta Pizzi
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, RM, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, RM, Italy
| | - Martina Peconi
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, RM, Italy
| | | | - Carmelo D’Alessio
- Department of Neurology, IRCCS Neuromed Institute, 86077 Pozzilli, IS, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, RM, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milan, MI, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention ad Heath Promotion, Istituto Superiore di Sanità, 00162 Rome, RM, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention ad Heath Promotion, Istituto Superiore di Sanità, 00162 Rome, RM, Italy
| |
Collapse
|
5
|
He L, Zhang F, Zhu Y, Lu M. A crosstalk between circular RNA, microRNA, and messenger RNA in the development of various brain cognitive disorders. Front Mol Neurosci 2022; 15:960657. [PMID: 36329693 PMCID: PMC9622787 DOI: 10.3389/fnmol.2022.960657] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), stroke, and postoperative neurocognitive disorder (POND) are commonly faced with neurocognitive disorders with limited therapeutic options. Some non-coding ribonucleic acids (ncRNAs) are involved in the development of various brain cognitive disorders. Circular RNAs (circRNAs), a typical group of ncRNAs, can function as competitive endogenous RNAs (ceRNAs) to dysregulate shared microRNAs (miRNAs) at post-transcription level, inhibiting regulation of miRNAs on their targeted messenger RNAs (mRNAs). circRNAs are abundant in central nervous system (CNS) diseases and cause brain disorders, but the exact roles of circRNAs are unclear. The crosstalk between circRNA, miRNA, and mRNA plays an important role in the pathogenesis of these neurocognitive dysfunction diseases and abnormal conditions including AD, PD, stroke, TBI, and POND. In this review, we summarized the participation of circRNA in neuroglial damage and inflammation. Finally, we aimed to highlight the regulatory mechanisms of circRNA–miRNA–mRNA networks in the development of various brain cognitive disorders and provide new insights into the therapeutics of these diseases.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
- *Correspondence: Liang He
| | - Furong Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
| | - Yuling Zhu
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
| | - Meilin Lu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Meilin Lu
| |
Collapse
|
6
|
Yang YS, He SL, Chen WC, Wang CM, Huang QM, Shi YC, Lin S, He HF. Recent progress on the role of non-coding RNA in postoperative cognitive dysfunction. Front Cell Neurosci 2022; 16:1024475. [PMID: 36313620 PMCID: PMC9608859 DOI: 10.3389/fncel.2022.1024475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), especially in elderly patients, is a serious complication characterized by impairment of cognitive and sensory modalities after surgery. The pathogenesis of POCD mainly includes neuroinflammation, neuronal apoptosis, oxidative stress, accumulation of Aβ, and tau hyperphosphorylation; however, the exact mechanism remains unclear. Non-coding RNA (ncRNA) may play an important role in POCD. Some evidence suggests that microRNA, long ncRNA, and circular RNA can regulate POCD-related processes, making them promising biomarkers in POCD diagnosis, treatment, and prognosis. This article reviews the crosstalk between ncRNAs and POCD, and systematically discusses the role of ncRNAs in the pathogenesis and diagnosis of POCD. Additionally, we explored the possible mechanisms of ncRNA-associated POCD, providing new knowledge for developing ncRNA-based treatments for POCD.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shi-Ling He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Mei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Yan-Chuan Shi,
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Shu Lin,
| | - He-fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- He-fan He,
| |
Collapse
|
7
|
Fan D, Chen X, Zhou H, Hu N, Chen C, Yao Y, Bai Y, Feng J, Jia J, Wang X. Plasma microRNA-221-3p as a biomarker for POCD after non-cardiac surgery. PLoS One 2022; 17:e0275917. [PMID: 36219614 PMCID: PMC9553040 DOI: 10.1371/journal.pone.0275917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Our previous study showed that the plasma microRNA-221-3p level could serve as a biomarker for major depression or mood. This study aimed to further investigate the role of plasma microRNA-221-3p level in postoperative cognitive dysfunction (POCD). Patients undergoing non-cardiac surgery were randomly assigned according to the inclusion and exclusion criteria. POCD was diagnosed by the Z score method. The relative level of plasma microRNA-221-3p was decided by quantitative real-time polymerase chain reaction. Multiple logistic regression analysis and receiver operating characteristic(ROC) curves were used for the analysis of plasma microRNA-221-3p prediction performance for POCD. At 7 days post-surgery, the rate of POCD was 34.04%. Patients in the POCD group had a higher preoperative depression score, older age, and longer operation duration than that in the NPOCD group. The relative level of plasma microRNA-221-3p in the POCD group was 1.78 and 2.73 times higher than that in the NPOCD group at 1 day before and 7 days after the surgery, respectively. The relative content of plasma microRNA-221-3p at 7 days after operation was an independent risk factor for POCD. The ROC curves showed that the area under the curve was 0.938 for plasma microRNA-221-3p at postoperative 7 days, and the threshold for POCD detection was 12.33 with a sensitivity and specificity of 81.3% and 96.3%, respectively. Our results indicate that the plasma postoperative microRNA-221-3p levels could be an effective predictor for POCD after non-cardiac surgery.
Collapse
Affiliation(s)
- Di Fan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Xuhui Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Hongli Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Na Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Chengchuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Yi Yao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Jianguo Feng
- Laboratoryof Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Jing Jia
- Laboratoryof Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province, P. R. China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, P. R. China
- * E-mail:
| |
Collapse
|
8
|
Wang W, Huo P, Zhang L, Lv G, Xia Z. Decoding competitive endogenous RNA regulatory network in postoperative cognitive dysfunction. Front Neurosci 2022; 16:972918. [PMID: 36203795 PMCID: PMC9530360 DOI: 10.3389/fnins.2022.972918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative neurological complication in elderly patients. Circular RNAs (circRNAs) are abundant in the mammalian brain and can probably regulate cognitive function. However, the competitive endogenous RNA (ceRNA) regulatory network in POCD remains illiterate. Transcriptomic signatures in the hippocampus of POCD mice derived from the Gene Expression Omnibus (GEO) dataset GSE190880, GSE95070, and GSE115440 were used to identify the circRNA, miRNA, and mRNA expression profiles of POCD mice compared with controls, respectively. A set of differentially expressed RNAs, including 119 circRNAs, 33 miRNAs, and 49 mRNAs were identified. Transcript validation showed the enhanced expression of circ_0001634, circ_0001345, and circ_0001493. A ceRNA regulatory network composed of three circRNAs, three miRNAs, and six mRNAs was established. The hub mRNAs in the ceRNA network were further found to be involved in the hormone catabolic process and regulation of canonical Wnt signaling pathway, revealing their crucial role in POCD. Finally, three miRNAs and four mRNAs were verified by qRT-PCR. These results based on bioinformatics and PCR array suggest that circ_0001634/miR-490-5p/Rbm47, circ_0001634/miR-490-5p/Sostdc1, circ_0001634/miR-7001-5p/Sostdc1, circ_0001345/miR-7001-5p/Sostdc1, and circ_0001493/miR-7001-5p/Sostdc1 may be novel diagnostic biomarkers and therapeutic targets for POCD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengwei Huo
- Department of Anesthesiology, Yulin No.2 Hospital, Yulin, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Lv
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Gang Lv,
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Zhongyuan Xia,
| |
Collapse
|
9
|
Wu YQ, Liu Q, Wang HB, Chen C, Huang H, Sun YM, Ma LH, Wan J, Sun YY, Miao HH. Microarray Analysis Identifies Key Differentially Expressed Circular RNAs in Aged Mice With Postoperative Cognitive Dysfunction. Front Aging Neurosci 2021; 13:716383. [PMID: 34483886 PMCID: PMC8415796 DOI: 10.3389/fnagi.2021.716383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients. Circular RNAs (circRNAs) may contribute to neurodegenerative diseases. However, the role of circRNAs in POCD in aged mice has not yet been reported. This study aimed to explore the potential circRNAs in a POCD model. First, a circRNA microarray was used to analyze the expression profiles. Differentially expressed circRNAs were validated using quantitative real-time polymerase chain reaction. A bioinformatics analysis was then used to construct a competing endogenous RNA (ceRNA) network. The database for annotation, visualization, and integrated discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of circRNA-related genes. Moreover, protein-protein interactions were analyzed to predict the circRNA-regulated hub genes using the STRING and molecular complex detection plug-in of Cytoscape. Microarray screen 124 predicted circRNAs in the POCD of aged mice. We found that the up/downregulated circRNAs were involved in multiple signaling pathways. Hub genes, including Egfr and Prkacb, were identified and may be regulated by ceRNA networks. These results suggest that circRNAs are dysexpressed in the hippocampus and may contribute to POCD in aged mice.
Collapse
Affiliation(s)
- Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yin-Ying Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
He L, Zhang F, Zhu Y, Lu M. Noncoding RNAs: Novel Insights into Postoperative Neurocognitive Disorders. ACS Chem Neurosci 2021; 12:1480-1486. [PMID: 33899470 DOI: 10.1021/acschemneuro.1c00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Postoperative recovery for patients (particularly elderly) will be commonly encountered for postoperative neurocognitive disorders. Although effort has been undertaken to better understand and prevent these disorders, little improvement has been observed, due to largely unknown mechanisms. Emerging evidence indicates that noncoding RNAs including microRNA(s), long noncoding RNA(s), and circular RNA(s) are promising biomarkers for diagnosis, prognosis, and novel pathways to reveal mechanisms of postoperative neurocognitive disorders. However, there has been little crosstalk between noncoding RNA biology and development of postoperative neurocognitive disorders. We discuss the major noncoding RNAs in mechanisms, diagnosis, risk-stratification, prognosis, and treatment in postoperative neurocognitive disorders in a novel approach.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan’an Hospital of Kunming City, Kunming 650051, China
| | - Furong Zhang
- Department of Anesthesiology, Yan’an Hospital of Kunming City, Kunming 650051, China
| | - Yuling Zhu
- Department of Anesthesiology, Yan’an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
11
|
Wen Y, Chun Y, Lian ZQ, Yong ZW, Lan YM, Huan L, Xi CY, Juan LS, Qing ZW, Jia C, Ji ZH. circRNA‑0006896‑miR1264‑DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep 2021; 23:311. [PMID: 33649864 PMCID: PMC7974330 DOI: 10.3892/mmr.2021.11950] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of the vascular wall with multiple causes. AS is the primary pathological basis of cardiovascular disease and stroke. Moreover, carotid plaque rupture and thrombus formation are the main causes of ischemic stroke. Therefore, understanding the formation of carotid plaques may help improve the prediction and prevention of cardiovascular and cerebrovascular events. Endothelial cell dysfunction results in re‑endothelialization and angiogenesis in atherosclerotic plaques, thus promoting plaque destabilization. The aim of the present study was to evaluate the effect of circular RNA (circRNA) molecules in serum exosomes (serum‑Exos) from patients with stable plaque atherosclerosis (SA) and unstable/vulnerable plaque atherosclerosis (UA). Specifically, the effect of circRNA on human umbilical vein endothelial cell (HUVEC) behavior and the mechanisms underlying plaque destabilization in AS were evaluated. Serum‑Exos were isolated, then identified using transmission electron microscopy, nanoparticle tracking analysis and western blotting. The serum‑Exo‑circRNA expression profile of patients with SA or UA was investigated using a circRNA array. The relationship between circRNA‑006896 in serum‑Exos and biochemical parameters of patients with SA and UA were analyzed using Spearman's correlation. In addition, HUVECs were incubated with serum‑Exos for in vitro functional assays. The present study demonstrated that circRNAs expression profiles in SA and UA serum‑Exos were significantly different, indicating a potential role for circRNAs in carotid plaque destabilization. The expression of circRNA‑0006896 was positively correlated with triglyceride, low‑density lipoprotein cholesterol (LDL‑C) and C‑reactive protein levels, and negatively correlated with albumin levels in patients with UA. However, circRNA‑0006896 expression was positively correlated with LDL‑C in patients with SA. Using bioinformatic analysis, a competing endogenous RNA (ceRNA) network was selected to study the regulatory roles of circRNA‑0006896 in serum‑Exos. Additionally, in HUVECs treated with serum‑Exos derived from patients with UA, the expression of circRNA‑0006896 in HUVECs was upregulated. This was accompanied by decreased expression of microRNA‑1264 and SOCS3, increased levels of DNMT1 and phosphorylated STAT3. HUVEC proliferation and migration were significantly increased in the UA group, compared with the mock and SA groups. This finding indicates that the circRNA‑0006896‑miR-1264‑DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells. Moreover, it suggests that circRNA‑0006896 may represent a therapeutic target for controlling JNK/STAT3 signaling in HUVECs. Thus, this study may provide insight on potential interventions against vulnerable plaque formation in patients with AS.
Collapse
Affiliation(s)
- Yan Wen
- General Practice Department, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yao Chun
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhong Qing Lian
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhang Wei Yong
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yang Mei Lan
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Liao Huan
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Chen Yi Xi
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Li Shu Juan
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhong Wen Qing
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Cheng Jia
- Office of Scientific Research and Development, Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhang Huan Ji
- Cardiovascular Department, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
12
|
Zheng H, Shi L, Tong C, Liu Y, Hou M. circSnx12 Is Involved in Ferroptosis During Heart Failure by Targeting miR-224-5p. Front Cardiovasc Med 2021; 8:656093. [PMID: 33969020 PMCID: PMC8097164 DOI: 10.3389/fcvm.2021.656093] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNA (circRNA) is a subclass of non-coding RNAs that enables the circular transcripts resistant to the exonuclease digestion. Iron homeostasis is essential for the body to maintain normal physiological functions. At present, the relationship among circRNA, iron metabolism and heart failure remains largely unknown. This study aimed to explore the regulatory mechanism of circRNA and iron metabolism in heart failure. We obtained circRNA, miRNA and mRNA data from public databases and built a ceRNA network. The prediction results were verified in the myocardial tissues of pressure overload-induced heart failure mice through the use of histopathological staining methods, iron and malondialdehyde (MDA) measurement tests, quantitative real-time PCR (qRT-PCR), Western blot analysis and luciferase reporter assay. A total of 4 genes related to iron metabolism and oxidative stress were identified, and a ceRNA network involving 7 circRNAs, 7 miRNAs, and 4 mRNAs was constructed using bioinformatics tools. The results of qRT-PCR and Western blot analyses indicated that the expression level of FTH1 was similar with that predicted by bioinformatics analysis. Echocardiographic measurement showed that heart failure mice have lower fractional shortening and ejection fraction. Moreover, the myocardium of heart failure mice displayed obvious fibrosis as well as increased levels of iron and MDA compared to control mice. Besides, circSnx12 could act as an endogenous sponge to bind with miR-224-5p, and the 3'UTR region of FTH1 also had miRNA binding sites. A circRNA-miRNA-mRNA regulatory network was successfully constructed by identifying differentially expressed genes related to iron metabolism. This new approach reveals potential circRNA targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Haoyuan Zheng
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China
| | - Lin Shi
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, China
| | - Changci Tong
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, China
| | - Yunen Liu
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| | - Mingxiao Hou
- Laboratory of Rescue Center of Severe Wound and Trauma Chinese People's Liberation Army, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command of China Medical University, Shenyang, China.,The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, China.,Shenyang Medical College, Shenyang, China
| |
Collapse
|
13
|
Prognostic plasma exosomal microRNA biomarkers in patients with substance use disorders presenting comorbid with anxiety and depression. Sci Rep 2021; 11:6271. [PMID: 33737514 PMCID: PMC7973758 DOI: 10.1038/s41598-021-84501-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Psychiatric disorders such as anxiety and depression precipitated by substance use occurred during both use and withdrawal. Exosomes play significant roles in biological functions and regulate numerous physiological and pathological processes in various diseases, in particular substance use disorders (SUDs) and other psychiatric disorders. To better understand the role of exosomal miRNAs in the pathology of symptoms of anxiety and depression in patients with SUDs, we first isolated circulating exosomes from heroin-dependent patients (HDPs) and methamphetamine-dependent patients (MDPs) and identified exosomal miRNAs that were differentially expressed between patients and healthy controls (HCs). Furthermore, the correlations between exosomal DE-miRNAs and symptoms of anxiety and depression which were measured using Hamilton-Anxiety (HAM-A)/Hamilton-Depression (HAM-D) Rating Scales in the participants. Notably, the expression level of exosomal hsa-miR-16-5p, hsa-miR-129-5p, hsa-miR-363-3p, and hsa-miR-92a-3p showed significantly negative correlations with HAM-A scores in both HDPs and MDPs. But all of the 4 DE-miRNAs lost significant correlations with HAM-D scores in HDPs. Functional annotation analyses showed that the target genes of the DE-miRNAs were mainly enriched for “synapse”, “cell adhesion”, “focal adhesion” and “MHC class II protein complex”. Our study suggests that a set of circulating exosomal miRNAs were associated with anxiety and depression in SUD patients and may have clinical utility as diagnostic and prognostic biomarkers.
Collapse
|
14
|
You Z, Chen L, Xu H, Huang Y, Wu J, Wu J. Influence of Anemia on Postoperative Cognitive Function in Patients Undergo Hysteromyoma Surgery. Front Mol Biosci 2021; 8:786070. [PMID: 34901161 PMCID: PMC8662362 DOI: 10.3389/fmolb.2021.786070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/23/2021] [Indexed: 02/05/2023] Open
Abstract
Cognitive dysfunction is a common disease in aging population. This study aims to compare the influence of different degrees of anemia on the cognitive function of patients undergo hysteromyoma surgery. Sixty-one patients aged 18-60 years who underwent uterine fibroid surgery in the Second Affiliated Hospital of Shantou University Medical College from March 2019 to December 2020 were selected for this study. Patients were divided into three groups: group normal (Group N, patients have no anemia), group of mild anemia (Group Mi, patients have mild anemia) and group of moderate anemia (Group Mo, patients had moderate anemia). Combined spinal and epidural anesthesia were administered. Cognitive function tests were performed 1 day before the surgery and repeated at the 5th and 30th days after surgery. Peripheral venous blood samples from patients were collected before the surgery, right after surgery and at the 24th and 72nd hours after surgery. The contents of S-100β, IL-6, TNF-α and IL-1β in serum samples were determined by ELISA. It was found that there were no significant differences in general characteristics of patients among Group N, Group Mi and Group Mo (p > 0.05). Nine patients developed postoperative cognitive dysfunction after surgery, and the incidence was 14.75% (9/61). The incidence of postoperative cognitive dysfunction (POCD) was 40% in Group Mo, which was higher than that in Group N and Group Mi. The difference was statistically significant (p < 0.05). Inflammatory factors in patients with POCD were higher in post-surgery than before-surgery (p < 0.05), while there was no statistical significance in the difference of inflammatory factors of patients without POCD before and after surgery (p > 0.05). Taken together, this study suggested that moderate anemia could be a risk factor of POCD in patients undergoing hysteromyoma surgeries. This study will help surgeons developing measures for preventing the occurrence of POCD.
Collapse
Affiliation(s)
- Zhijian You
- Department of Anesthesiology, Liuzhou People’s Hospital, Liuzhou, China
| | - Lesi Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongxia Xu
- Quality Control Department, Liuzhou People’s Hospital, Liuzhou, China
| | - Yidan Huang
- Department of Anesthesiology, Liuzhou People’s Hospital, Liuzhou, China
| | - Jinglei Wu
- Department of Anesthesiology, Liuzhou People’s Hospital, Liuzhou, China
- *Correspondence: Jinglei Wu, ; Jiaxuan Wu,
| | - Jiaxuan Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Jinglei Wu, ; Jiaxuan Wu,
| |
Collapse
|
15
|
Diagnostic Criteria of Postoperative Cognitive Dysfunction: A Focused Systematic Review. Anesthesiol Res Pract 2020; 2020:7384394. [PMID: 33281900 PMCID: PMC7685826 DOI: 10.1155/2020/7384394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Postoperative Cognitive Dysfunction (POCD) is characterized by a deterioration in cognitive performance after surgery and is increasingly addressed in research studies. However, a uniform definition of POCD seems to be lacking, which is a major threat to clinical research in this area. We performed a focused systematic review to determine the current degree of heterogeneity in how POCD is defined across studies and to identify those diagnostic criteria that are used most commonly. The search identified 173 records, of which 30 were included. Neurocognitive testing was most commonly performed shortly before surgery and at 7 days postoperatively. A variety of neurocognitive tests were used to test a range of cognitive domains, including complex attention, language, executive functioning, perceptual-motor function, and learning and memory. The tests that were used most commonly were the Mini-Mental State Examination, the digit span test, the trail making test part A, and the digit symbol substitution test, but consensus on which test result would be considered “positive” for POCD was sparse. The results of this systematic review suggest the lack of a consistent approach towards defining POCD. However, commonalities were identified which may serve as a common denominator for deriving consensus-based diagnostic guidelines for POCD.
Collapse
|
16
|
Zhou H, Li F, Ye W, Wang M, Zhou X, Feng J, Liu L, Wang X. Correlation Between Plasma CircRNA-089763 and Postoperative Cognitive Dysfunction in Elderly Patients Undergoing Non-cardiac Surgery. Front Behav Neurosci 2020; 14:587715. [PMID: 33132863 PMCID: PMC7573279 DOI: 10.3389/fnbeh.2020.587715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
In our previous experiment, we found that there were abnormal levels of circRNA-089763 in the plasma exosomes of patients with postoperative cognitive dysfunction (POCD) after cardiac surgery. Therefore, the aim of this study was to further investigate the relationship between plasma circRNA-089763 level and POCD in elderly patients after non-cardiac surgery. A prospective cohort study was conducted to select elderly patients undergoing elective non-cardiac surgery. A total of 72 patients were enrolled in this study, and cognitive functions were assessed 1 day before and 3 days after surgery by a series of neuropsychological measurements. Next, patients were divided into POCD and non-POCD (NPOCD) groups according to the Z score method. Blood was collected the day before and 3 days after surgery, and the plasma circRNA-089763 level was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Then, the difference and correlation in plasma circRNA-089763 levels between the POCD and NPOCD groups were analyzed. On the third day after surgery, the incidence of POCD was 30.56%. The relative level of circRNA-089763 in the POCD group was 2.41 times higher than that in the NPOCD group (t = 4.711, p < 0.001), patients in POCD group had higher age (t = 5.971, p < 0.001), higher American Society of Anesthesiologists classification (χ2 = 14.726, p < 0.001), less years of education (t = 2.449, p = 0.017), more intraoperative blood loss (t = 3.196, p = 0.002), and higher visual analog scale (VAS) scores (t = 10.45, p < 0.001). The binary logistic regression analysis showed that the circRNA-089763 level, age, and intraoperative blood loss were independently associated with POCD (OR: 2.75, 95% CI: 1.261–5.999, p = 0.011; OR: 1.32, 95% CI: 1.114–1.565, p = 0.001; OR: 1.017, 95% CI: 1.004–1.03, p = 0.011). These results demonstrated that the circRNA-089763 plasma level was related to POCD after non-cardiac surgery in elderly patients.
Collapse
Affiliation(s)
- Hongli Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fuyu Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanlin Ye
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Maozhou Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xian Zhou
- Department of Internal Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Gao R, Chen C, Zhao Q, Li M, Wang Q, Zhou L, Chen E, Chen H, Zhang Y, Cai X, Liu C, Cheng X, Zhang S, Mao X, Qiu Y, Gan L, Yu H, Liu J, Zhu T. Identification of the Potential Key Circular RNAs in Elderly Patients With Postoperative Cognitive Dysfunction. Front Aging Neurosci 2020; 12:165. [PMID: 32655392 PMCID: PMC7324535 DOI: 10.3389/fnagi.2020.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is one of the severe complications after surgery, inducing low life quality and high mortality, especially in elderly patients. However, the underlying molecular mechanism of POCD remains largely unknown, and the ideal biomarker for clinical diagnosis and prognosis is lacking. Circular RNAs (circRNAs), as a unique class of non-coding RNAs, were characterized by its stability and conservativeness, serving as novel biomarkers in various diseases. Nevertheless, the role of circRNAs in the occurrence of POCD remains elusive. Methods To investigate the differentially expressed circRNAs in the serum of POCD patients and its potential role in the development of POCD, we performed a circRNA microarray to screen the differentially expressed circRNAs in the serum samples from three patients of the POCD group and three paired patients of the non-POCD group. Subsequently, quantitative real-time polymerase chain reaction analysis (qRT-PCR) was utilized to verify the microarray data with the serum samples from 10 paired patients. Cytoscape software was used to construct the circRNA–miRNA–mRNA network for circRNAs with different expression levels as well as the target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed the biological functions of the differentially expressed circRNAs target genes. Results In total, we have analyzed 10,198 circRNAs through the microarray. Compared with the non-POCD patient group, there were 210 differentially expressed circRNAs with 133 upregulated and 77 downregulated in the POCD group (≥2-fold differential expression, P ≤ 0.05). The qRT-PCR confirmed 10 circRNAs with different expressed levels, and the results were consistent with the microarray findings. Among them, hsa_circRNA_001145, hsa_circRNA_101138, and hsa_circRNA_061570 had the highest magnitude of change. The GO analysis showed that the differentially expressed circRNAs were associated with the regulation of the developmental process, cell-to-cell adhesion, and nervous system development. The KEGG analysis showed that the target genes of circRNAs were enriched in the MAPK signaling pathway and RAS signaling pathway. According to the targetscan7.1 and mirdbV5 databases, the circRNA–miRNA–mRNA network was constructed, and these results provided a vital landscape of circRNA expression profile in POCD. Conclusions Our study provides an essential perspective for the differential expression of circRNAs in POCD patients. Further studies need to be performed to explore their potential therapeutic roles in the development of POCD.
Collapse
Affiliation(s)
- Rui Gao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhou
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Erya Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingwei Cai
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changliang Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Cheng
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Mao
- Department of Neurology, Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yanhua Qiu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Cao C, Deng F, Hu Y. Dexmedetomidine alleviates postoperative cognitive dysfunction through circular RNA in aged rats. 3 Biotech 2020; 10:176. [PMID: 32226705 PMCID: PMC7093639 DOI: 10.1007/s13205-020-2163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNA (circRNA) has been well studied in many diseases, whereas their role in patients with postoperative cognitive dysfunction (POCD) remains largely unclear. Here, we investigated the therapeutic effects of dexmedetomidine (Dex) on POCD and analyzed the role of circRNA as well as the pathways that may be involved. The Morris water maze test demonstrated that POCD rats have a longer incubation period than the normal group, but the latency of POCD rats was significantly lower after Dex treatment. Moreover, HE staining showed that Dex improved hippocampal pathological changes. RNA sequencing showed 164 differentially expressed circRNAs between POCD and Dex groups; 74 were upregulated and 90 were downregulated in the Dex group. A total of 20,790 target genes for differentially expressed circRNAs were observed in RNAhybrid and Miranda databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the target genes of differentially expressed circRNAs are mainly focused on positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage, negative regulation of cell adhesion mediated by integrin, and response to cytokines and other function of life activities and involved in the P53 signaling pathway and nuclear factor kappa B (NF-κB) signaling pathway. Furthermore, the expression of five candidate circRNAs (circ-Shank3, circ-Cdc42bpa, circ-chrx-24658, cir-chr17-3642 and circ-Sgsm1) and target genes were consistent with the RNA sequencing results, which was verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results indicate that circ-Shank3 participate in the process of Dex improved POCD through regulating the P53 and NF-κB signaling pathways and may potentially facilitate POCD treatment through the development of clinical drugs.
Collapse
Affiliation(s)
- Cao Cao
- Department of Anesthesiology, Donghu District, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 Jiangxi China
| | - Fumou Deng
- Department of Anesthesiology, Donghu District, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 Jiangxi China
| | - Yanhui Hu
- Department of Anesthesiology, Donghu District, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 Jiangxi China
| |
Collapse
|
19
|
Mao J, Li T, Fan D, Zhou H, Feng J, Liu L, Zhang C, Wang X. Abnormal expression of rno_circRNA_014900 and rno_circRNA_005442 induced by ketamine in the rat hippocampus. BMC Psychiatry 2020; 20:1. [PMID: 31898506 PMCID: PMC6939336 DOI: 10.1186/s12888-019-2374-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies have shown that circular RNA (circRNA) is rich in microRNA (miRNA) binding sites. We have previously demonstrated that the antidepressant effect of ketamine is related to the abnormal expression of various miRNAs in the brain. This study determined the expression profile of circRNAs in the hippocampus of rats treated with ketamine. METHODS The aberrantly expressed circRNAs in rat hippocampus after ketamine injection were analyzed by microarray chip, and we further validated these circRNAs by quantitative reverse-transcription PCR (qRT-PCR). The target genes of the different circRNAs were predicted using bioinformatic analyses, and the functions and signal pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS Microarray analysis showed that five circRNAs were aberrantly expressed in rat hippocampus after ketamine injection (fold change > 2.0, p < 0.05). The results from the qRT-PCR showed that one of the circRNAs was significantly increased (rno_circRNA_014900; fold change = 2.37; p = 0.03), while one was significantly reduced (rno_circRNA_005442; fold change = 0.37; p = 0.01). We discovered a significant enrichment in several GO terms and pathways associated with depression. CONCLUSION Our findings showed the abnormal expression of ketamine-induced hippocampal circRNAs in rats.
Collapse
Affiliation(s)
- Jing Mao
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Tianmei Li
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Di Fan
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Hongli Zhou
- grid.488387.8School of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Jianguo Feng
- grid.488387.8Laboratory of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province People’s Republic of China
| | - Li Liu
- grid.488387.8Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Road, Luzhou, Sichuan Province 646000 People’s Republic of China
| | - Chunxiang Zhang
- 0000000106344187grid.265892.2Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Xiaobin Wang
- Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, No.25, Taiping Road, Luzhou, Sichuan Province, 646000, People's Republic of China.
| |
Collapse
|