1
|
Jeong YS, Huh S, Kim JC, Park JY, Lee C, Kim MS, Koo J, Bae YS. 2-Undecanone derived from Pseudomonas aeruginosa modulates the neutrophil activity. BMB Rep 2022. [PMID: 35651330 PMCID: PMC9442345 DOI: 10.5483/bmbrep.2022.55.8.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a well-known Gram-negative opportunistic pathogen. Neutrophils play key roles in mediating host defense against P. aeruginosa infection. In this study, we identified a metabolite derived from P. aeruginosa that regulates neutrophil activities. Using gas chromatography-mass spectrometry, a markedly increased level of 2-undecanone was identified in the peritoneal fluid of P. aeruginosa-infected mice. 2-Undecanone elicited the activation of neutrophils in a Gai-phospholipase C pathway. However, 2-undecanone strongly inhibited responses to lipopolysaccharide and bactericidal activity of neutrophils against P. aeruginosa by inducing apoptosis. Our results demonstrate that 2-undecanone from P. aeruginosa limits the innate defense activity of neutrophils, suggesting that the production of inhibitory metabolites is a strategy of P. aeruginosa for escaping the host immune system.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sunghyun Huh
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Ye Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
2
|
Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS. Molecules 2022; 27:molecules27123921. [PMID: 35745045 PMCID: PMC9228095 DOI: 10.3390/molecules27123921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Houttuynia cordata is a medicinal and edible plant with a wide biological interest. Many parts were discarded due to various modes of consumption, resulting in resource waste. In this study, a comprehensive study was conducted on various edible indicators and medicinal components of Houttuynia cordata to understand its edible and medicinal value. The edible indexes of each root, stem, and leaf were determined, and the metabolites of different parts were investigated using the headspace solid-phase micro-extraction technique (HS-SPME-GC-MS). The differential metabolites were screened by orthogonal partial least squares discriminant analysis (OPLS-DA) and clustering analysis. The results of the study showed that the parts of Houttuynia cordata with high edibility values as a vegetable were mainly the roots and leaves, with the highest vitamin C content in the roots and the highest total flavonoids, soluble sugars, and total protein in the leaves. The nutrient content of all the stems of Houttuynia cordata was lower and significantly different from the roots and leaves (p < 0.05). In addition, 209 metabolites were isolated from Houttuynia cordata, 135 in the roots, 146 in the stems, 158 in the leaves, and 91 shared metabolites. The clustering analysis and OPLS-DA found that the parts of Houttuynia cordata can be mainly divided into above-ground parts (leaves and stems) and underground parts (roots). When comparing the differential metabolites between the above-ground parts and underground parts, it was found that the most important medicinal component of Houttuynia cordata, 2-undecanone, was mainly concentrated in the underground parts. The cluster analysis resulted in 28 metabolites with up-regulation and 17 metabolites with down-regulation in the underground parts. Most of the main components of the underground part have pharmacological effects such as anti-inflammatory, anti-bacterial and antiviral, which are more suitable for drug development. Furthermore, the above-ground part has more spice components and good antioxidant capacity, which is suitable for the extraction of edible flavors. Therefore, by comparing and analyzing the differences between the edible and medicinal uses of different parts of Houttuynia cordata as a medicinal and food plant, good insights can be obtained into food development, pharmaceutical applications, agricultural development, and the hygiene and cosmetic industries. This paper provides a scientific basis for quality control and clinical use.
Collapse
|
3
|
Liu Y, Tang G, Li J. Effect and Mechanism Study of Sodium Houttuyfonate on Ventilator-Induced Lung Injury by Inhibiting ROS and Inflammation. Yonsei Med J 2021; 62:545-554. [PMID: 34027642 PMCID: PMC8149929 DOI: 10.3349/ymj.2021.62.6.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Ventilator-induced lung injury (VILI) is a serious complication of mechanical ventilation (MV) that increases morbidity and mortality of patients receiving ventilator treatment. This study aimed to reveal the molecular mechanism of sodium houttuyfonate (SH) on VILI. MATERIALS AND METHODS The male mice VILI model was established by high tidal volume ventilation. The cell model was established by performing cell stretch (CS) experiments on murine respiratory epithelial cells MLE-15. In addition, the JNK activator Anisomycin and JNK inhibitor SP600125 were used on VILI mice and CS-treated cells. RESULTS VILI modeling damaged the structural integrity, increased apoptosis and wet-to-dry (W/D) ratio, enhanced the levels of inflammatory factors, reactive oxygen species (ROS) and malonaldehyde (MDA), and activated JNK pathway in lung tissues. SH gavage alleviated lung injury, decreased apoptosis and W/D ratio, and reduced levels of inflammatory factors, ROS and MDA, and p-JNK/JNK expression of lung tissues in VILI mice. However, activation of JNK wiped the protective effect of SH on VILI. Contrary results were found in experiments with JNK inhibitor SP600125. CONCLUSION SH relieved VILI by inhibiting the ROS-mediated JNK pathway.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Tang
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyu Li
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Sodium Houttuyfonate Ameliorates β-amyloid 1-42-Induced Memory Impairment and Neuroinflammation through Inhibiting the NLRP3/GSDMD Pathway in Alzheimer's Disease. Mediators Inflamm 2021; 2021:8817698. [PMID: 34188608 PMCID: PMC8195664 DOI: 10.1155/2021/8817698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Objective Our research is designed to explore the function of sodium houttuyfonate (SH) on Alzheimer's disease (AD) and its potential molecular mechanisms. Methods In our study, the Morris water maze (MWM) test was used to assess the role of SH on spatial learning and memory deficiency in amyloid-β peptide (Aβ)1-42-induced AD mice. We explored the functions of SH on proinflammatory cytokines, neuron apoptosis, and damage in vivo and in vitro by using an enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, western blot, and Nissl staining. Moreover, the effect of SH on oxidative stress in vivo and in vitro was also detected. To explore the underlying molecular mechanisms of SH on AD, the expressions of proteins and mRNA involved in the NOD-like receptor pyrin domain containing-3/gasdermin D (NLRP3/GSDMD) pathway were determined using western blot, immunofluorescence staining, and qRT-PCR. Results Our data demonstrated that SH ameliorated spatial learning and memory deficiency in Aβ 1-42-induced AD mice. Moreover, SH significantly improved hippocampal neuron damage and inhibited oxidative stress, neuroinflammation, and neuron apoptosis in Aβ 1-42-induced AD mice and PC12 cells. The results also revealed that SH protected Aβ 1-42-induced AD through inhibiting the NLRP3/GSDMD pathway. Conclusion The present study demonstrated that SH could ameliorate Aβ 1-42-induced memory impairment neuroinflammation and pyroptosis through inhibiting the NLRP3/GSDMD pathway in AD, suggesting that SH may be a potential candidate for AD treatment.
Collapse
|
5
|
Wu X, Li J, Wang S, Jiang L, Sun X, Liu X, Yao X, Zhang C, Wang N, Yang G. 2-Undecanone Protects against Fine Particle-Induced Kidney Inflammation via Inducing Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5206-5215. [PMID: 33877841 DOI: 10.1021/acs.jafc.1c01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to particulate matter has been associated with diseases of the respiratory and cardiovascular systems. Owing to the dense vasculature of the kidney, it has also been identified as a PM2.5 target organ. A potential contributor to PM2.5-mediated damage may be the promotion of inflammation. The essential oil 2-undecanone (2-methyl nonyl ketone) is an H. cordata isolate, and it has been shown to possess diverse pharmacologic effects, including anti-inflammatory properties. In this study we explored the ability of 2-undecanone to protect against PM2.5-induced kidney inflammation and the exact mechanisms in this process. We found that PM2.5 elevated the levels of certain inflammatory cytokines in BALB/c mice and in HEK 293 cells. Supplementation with 2-undecanone attenuated this PM2.5-induced inflammatory injury. Interestingly, in HEK 293 cells, the PM2.5-associated inflammation was aggravated by the mitophagy inhibitor Medivi-1, while it was attenuated by rapamycin, indicating that the mechanism of 2-undecanone-mediated inhibition of inflammation may relate to mitophagy. Meanwhile, 2-undecanone induces mitophagy in HEK 293 cells by suppressing Akt1-mTOR signaling. These results indicate that PM2.5 can induce kidney inflammation, and mitophagy induced by 2-undecanone may play a protective role against this renal inflammation.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases, Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases, Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases, Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
6
|
Akhtar M, Shaukat A, Zahoor A, Chen Y, Wang Y, Yang M, Umar T, Guo M, Deng G. Hederacoside-C Inhibition of Staphylococcus aureus-Induced Mastitis via TLR2 & TLR4 and Their Downstream Signaling NF-κB and MAPKs Pathways In Vivo and In Vitro. Inflammation 2021; 43:579-594. [PMID: 31845052 DOI: 10.1007/s10753-019-01139-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hederacoside-C (HDC) is a biological active ingredient, extracted from the leaves of Hedera helix. It has been reported to have anti-inflammatory properties. However, the effects of HDC on Staphylococcus aureus (S. aureus)-induced mastitis have not been reported yet. Here, we evaluated the anti-inflammatory effects of HDC on S. aureus-induced mastitis both in vivo on mammary gland tissues and in vitro on RAW 264.7 cells. The ascertained histopathological changes and MPO activity revealed that HDC defended mammary glands from tissue destruction and inflammatory cell infiltration induced by S. aureus. The results of ELISA, western blot, and qRT-PCR indicated that HDC significantly inhibited the expressions IL-6, IL-1β, and TNF-α and enhanced the IL-10 by downregulating and upregulating their relevant genes, respectively. Furthermore, HDC markedly suppressed the TLR2 and TLR4 expressions by attenuating the MAPKs (p38, ERK, JNK) and NF-κB (p65 and IκBα) pathways followed by decreasing the phosphorylation of p38, ERK, JNK, p65, and IκBα. The above parameters enhanced the mammary gland defense and reduced inflammation. These findings suggested that HDC may have the potential to be an effective anti-inflammatory drug for the S. aureus-induced mice mastitis and in RAW 264.7 cells.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|
8
|
Sub-Inhibitory Concentrations of Sodium Houttuyfonate in Combination with Erythromycin Inhibit Biofilm Formation and Expression of IcaA in Staphylococcus epidermidis. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.98009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|