1
|
Bolha L, Hočevar A, Jurčić V. Current state of epigenetics in giant cell arteritis: Focus on microRNA dysregulation. Autoimmun Rev 2024:103739. [PMID: 39732382 DOI: 10.1016/j.autrev.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA. Since current understanding of miRNA involvement in GCA remains largely based on extrapolation of previously determined miRNA functions in vitro or in loss- or gain-of-function studies, an overall insight into the role of miRNA alteration in GCA pathophysiology remains limited. In this narrative review, we summarize the current knowledge on aberrantly expressed miRNAs in GCA and thoroughly discuss the impact of their altered regulatory role in the context of GCA setting. Furthermore, we address challenges and future perspectives in utilization of miRNA-based diagnostic and prognostic biomarkers of GCA in clinical settings.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Millet M, Auroux M, Beaudart C, Demonceau C, Ladang A, Cavalier E, Reginster JY, Bruyère O, Chapurlat R, Rousseau JC. Association of circulating hsa-miRNAs with sarcopenia: the SarcoPhAge study. Aging Clin Exp Res 2024; 36:70. [PMID: 38485856 PMCID: PMC10940485 DOI: 10.1007/s40520-024-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE To identify a microRNA signature associated to sarcopenia in community-dwelling older adults form the SarcoPhAge cohort. METHODS In a screening phase by next generation sequencing (NGS), we compared the hsa-miRome expression of 18 subjects with sarcopenia (79.6 ± 6.8 years, 9 men) and 19 healthy subjects without sarcopenia (77.1 ± 6 years, 9 men) at baseline. Thereafter, we have selected eight candidate hsa-miRNAs according to the NGS results and after a critical assessment of previous literature. In a validation phase and by real-time qPCR, we then analyzed the expression levels of these 8 hsa-miRNAs at baseline selecting 92 healthy subjects (74.2 ± 10 years) and 92 subjects with sarcopenia (75.3 ± 6.8 years). For both steps, the groups were matched for age and sex. RESULTS In the validation phase, serum has-miRNA-133a-3p and has-miRNA-200a-3p were significantly decreased in the group with sarcopenia vs controls [RQ: relative quantification; median (interquartile range)]: -0.16 (-1.26/+0.90) vs +0.34 (-0.73/+1.33) (p < 0.01) and -0.26 (-1.07/+0.68) vs +0.27 (-0.55/+1.10) (p < 0.01) respectively. Has-miRNA-744-5p was decreased and has-miRNA-151a-3p was increased in the group with sarcopenia vs controls, but this barely reached significance: +0.16 (-1.34/+0.79) vs +0.44 (-0.31/+1.00) (p = 0.050) and +0.35 (-0.22/+0.90) vs +0.03 (-0.68/+0.75) (p = 0.054). CONCLUSION In subjects with sarcopenia, serum hsa-miRNA-133a-3p and hsa-miRNA-200a-3p expression were downregulated, consistent with their potential targets inhibiting muscle cells proliferation and differentiation.
Collapse
Affiliation(s)
| | - Maxime Auroux
- INSERM 1033, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Charlotte Beaudart
- Clinical Pharmacology and Toxicology Research Unit (URPC), NARILIS, Department of Biomedical Sciences, Faculty of Medicine, University of Namur, Namur, Belgium
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Céline Demonceau
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Roland Chapurlat
- INSERM 1033, Lyon, France
- PMO, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Lyon, France
| | | |
Collapse
|
3
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
4
|
Cui Y, Zhou Y, Gan N, Xiang Q, Xia M, Liao W, Zheng XL, Peng J, Tang Z. The Role of Extracellular Non-coding RNAs in Atherosclerosis. J Cardiovasc Transl Res 2022; 15:477-491. [PMID: 35233720 DOI: 10.1007/s12265-022-10218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is a complex chronic inflammatory disease that leads to myocardial infarction, stroke, and disabling peripheral artery disease. Non-coding RNAs (ncRNAs) directly participate in various physiological processes and exhibit a wide range of biological functions. The present review discusses how different ncRNAs participate in the process of AS in various carrier forms. We focused on the role and potential mechanisms of extracellular ncRNAs in AS and examined their potential implications for clinical treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Yating Zhou
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Mengdie Xia
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liao
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Juan Peng
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Barbalata T, Moraru OE, Stancu CS, Devaux Y, Simionescu M, Sima AV, Niculescu LS. Increased miR-142 Levels in Plasma and Atherosclerotic Plaques from Peripheral Artery Disease Patients with Post-Surgery Cardiovascular Events. Int J Mol Sci 2020; 21:ijms21249600. [PMID: 33339419 PMCID: PMC7766790 DOI: 10.3390/ijms21249600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is an intensive effort to identify biomarkers to predict cardiovascular disease evolution. We aimed to determine the potential of microRNAs to predict the appearance of cardiovascular events (CVEs) in patients with peripheral artery disease (PAD) following femoral artery bypass surgery. Forty-seven PAD patients were enrolled and divided into two groups, without CVEs (n = 35) and with CVEs (n = 12), during 1 year follow-up. Intra-surgery atherosclerotic plaques from femoral arteries were collected and the levels of miR-142, miR-223, miR-155, and miR-92a of the primary transcripts of these microRNAs (pri-miRNAs), and gene expression of Drosha and Dicer were determined. Results showed that, in the plaques, miR-142, miR-223, and miR-155 expression levels were significantly increased in PAD patients with CVEs compared to those without CVEs. Positive correlations between these miRNAs and their pri-miRNAs levels and the Dicer/Drosha expression were observed. In the plasma of PAD patients with CVEs compared to those without CVEs, miR-223 and miR-142 were significantly increased. The multiple linear regression analyses revealed significant associations among several plasma lipids, oxidative and inflammatory parameters, and plasma miRNAs levels. Receiver operator characteristic (ROC) analysis disclosed that plasma miR-142 levels could be an independent predictor for CVEs in PAD patients. Functional bioinformatics analyses supported the role of these miRNAs in the regulation of biological processes associated with atherosclerosis. Taken together, these data suggest that plasma levels of miR-142, miR-223, miR-155, and miR-92a can significantly predict CVEs among PAD patients with good accuracy, and that plasma levels of miR-142 can be an independent biomarker to predict post-surgery CVEs development in PAD patients.
Collapse
Affiliation(s)
- Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Oriana E. Moraru
- Emergency Clinical Hospital “Prof. Dr. Agrippa Ionescu”, 149 I.C. Brătianu Street, 077015 Baloteşti, Ilfov County, Romania;
| | - Camelia S. Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Maya Simionescu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Anca V. Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
| | - Loredan S. Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (T.B.); (C.S.S.); (M.S.); (A.V.S.)
- Correspondence:
| |
Collapse
|