1
|
Li J, Fu Y, Wang Y, Zheng Y, Zhang K, Li Y. Qi Lang formula relieves constipation via targeting SCF/c-kit signaling pathway: An integrated study of network pharmacology and experimental validation. Heliyon 2024; 10:e31860. [PMID: 38841509 PMCID: PMC11152960 DOI: 10.1016/j.heliyon.2024.e31860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Constipation is one of the chronic gastrointestinal functional diseases that affects the quality of life. While Qi Lang Formula (QLF) has demonstrated effectiveness in alleviating constipation symptoms, its precise mechanism remains elusive. Methods QLF was analyzed using UPLC-MS/MS. Targets for QLF were collected from SwissADME, Herb, ITCM databases, and constipation-related targets from scRNA-seq and Genecards databases. Overlapping targets suggested potential QLF therapy targets for constipation. Enrichment analysis used the KOBAS database. A "drug-ingredient-target" network was constructed with Cytoscape, and AutoDock verified active ingredient binding. H&E staining assessed colonic mucosa changes, TEM examined ICC structural changes. ELISA measured neurotransmitter levels, and Western blot verified QLF's effect on target proteins. ICC proliferation was observed through immunofluorescence. Results We identified 89 targets of QLF associated with ICC-related constipation, with c-Kit emerging as the pivotal target. Molecular docking studies revealed that Atractylenolide Ⅲ, Apigenin, Formononetin, Isorhamnetin, Naringenin, and Ononin exhibited strong binding affinities for the c-Kit structural domain. QLF significantly enhanced first stool passage time, fecal frequency, fecal moisture content, and intestinal propulsion rate. Further analysis unveiled that QLF not only restored neurotransmitter levels but also mitigated colon muscular fiber ruptures. ICC ultrastructure exhibited partial recovery, while Western blot confirmed upregulated c-Kit expression and downstream targets. Immunofluorescence results indicated ICC proliferation post QLF treatment in rat colon. Conclusion Our findings suggest that QLF may promote ICC proliferation by targeting SCF/c-Kit and its downstream signaling pathway, thereby regulating intestinal motility.
Collapse
Affiliation(s)
- Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yugang Fu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
2
|
Sgambato V. The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders. Int J Mol Sci 2024; 25:5245. [PMID: 38791281 PMCID: PMC11121119 DOI: 10.3390/ijms25105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT4 receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons. Outside the central nervous system, the 5-HT4 receptor is notably expressed in the gastrointestinal tract. The wide distribution of the 5-HT4 receptor undoubtedly contributes to its involvement in a plethora of functions. In addition, the modulation of this receptor influences the release of serotonin, but also the release of other neurotransmitters such as acetylcholine and dopamine. This is a considerable asset, as the modulation of the 5-HT4 receptor can therefore play a direct or indirect beneficial role in various disorders. One of the main advantages of this receptor is that it mediates a much faster antidepressant and anxiolytic action than classical selective serotonin reuptake inhibitors. Another major benefit of the 5-HT4 receptor is that its activation enhances cognitive performance, probably via the release of acetylcholine. The expression of the 5-HT4 receptor is also altered in various eating disorders, and its activation by the 5-HT4 agonist negatively regulates food intake. Additionally, although the cerebral expression of this receptor is modified in certain movement-related disorders, it is still yet to be determined whether this receptor plays a key role in their pathophysiology. Finally, there is no longer any need to demonstrate the value of 5-HT4 receptor agonists in the pharmacological management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), 69675 Bron, France; ; Tel.: +33-4379-11249
- UFR Biosciences, Université de Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
3
|
Neurophysiological Effects of Electrical Stimulation on a Patient with Neurogenic Bowel Dysfunction and Cauda Equina Syndrome after Spinal Anesthesia: A Case Report. Medicina (B Aires) 2023; 59:medicina59030588. [PMID: 36984589 PMCID: PMC10051071 DOI: 10.3390/medicina59030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Neurogenic bowel dysfunction (NBD) is common in patients with cauda equina syndrome (CES). Previous studies have reported that electrical stimulation (ES) improves NBD but more neurophysiologic evidence is required. This case report describes a patient who experienced difficulty with defecation as a result of cauda equina syndrome (CES) that developed after a cesarean section performed 12 years ago under spinal anesthesia. The neurophysiological effects were assessed using the bulbocavernosus reflex (BCR) and electromyography (EMG). Two ES treatments, interferential current therapy and transcutaneous electrical stimulation, were used to stimulate the intestine and the external anal sphincter, respectively. The BCR results showed right-side delayed latency and no response on the left side. Needle EMG revealed abnormal spontaneous activities of the bilateral bulbocavernosus (BC) muscles. Electrodiagnostic testing revealed chronic bilateral sacral polyradiculopathy, compatible with CES. After treatment, the patient reported an improved perianal sensation, less strain and time for defecation than before, and satisfaction with her bowel condition. At the follow-up electrodiagnosis, the BCR latency was normal on the right side—needle EMG revealed reductions in the abnormal spontaneous activities of both BC muscles and re-innervation of the right BC muscle. Electrodiagnostic testing can offer insight into the neurophysiological effects of ES, which can help in understanding the mechanism of action and optimizing the therapy for patients with NBD.
Collapse
|
4
|
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 2023; 17:1095259. [PMID: 36816852 PMCID: PMC9936196 DOI: 10.3389/fncel.2023.1095259] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Ryan M. Dorrian,
| | | | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin. Int J Mol Sci 2022; 23:ijms232112994. [PMID: 36361784 PMCID: PMC9656028 DOI: 10.3390/ijms232112994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections. BioLuminescent-OptoGenetics (BL-OG) presents an avenue to non-invasively and specifically stimulate neurons; genetically targeted neurons express luminopsins (LMOs), light-emitting luciferases tethered to light-sensitive channelrhodopsins that are activated by adding the luciferase substrate coelenterazine (CTZ). This approach employs ion channels for current conduction while activating the channels through treatment with the small molecule CTZ, thus allowing non-invasive stimulation of all targeted neurons. We previously showed the efficacy of this approach for improving locomotor recovery following severe spinal cord contusion injury in rats expressing the excitatory luminopsin 3 (LMO3) under control of a pan-neuronal and motor-neuron-specific promoter with CTZ applied through a lateral ventricle cannula. The goal of the present study was to test a new generation of LMOs based on opsins with higher light sensitivity which will allow for peripheral delivery of the CTZ. In this construct, the slow-burn Gaussia luciferase variant (sbGLuc) is fused to the opsin CheRiff, creating LMO3.2. Taking advantage of the high light sensitivity of this opsin, we stimulated transduced lumbar neurons after thoracic SCI by intraperitoneal application of CTZ, allowing for a less invasive treatment. The efficacy of this non-invasive BioLuminescent-OptoGenetic approach was confirmed by improved locomotor function. This study demonstrates that peripheral delivery of the luciferin CTZ can be used to activate LMOs expressed in spinal cord neurons that employ an opsin with increased light sensitivity.
Collapse
|
6
|
Li B, Li M, Luo Y, Li R, Li W, Liu Z. Engineered 5-HT producing gut probiotic improves gastrointestinal motility and behavior disorder. Front Cell Infect Microbiol 2022; 12:1013952. [PMID: 36339343 PMCID: PMC9630942 DOI: 10.3389/fcimb.2022.1013952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Slow transit constipation is an intractable constipation with unknown aetiology and uncertain pathogenesis. The gut microbiota maintains a symbiotic relationship with the host and has an impact on host metabolism. Previous studies have reported that some gut microbes have the ability to produce 5-hydroxytryptamine (5-HT), an important neurotransmitter. However, there are scarce data exploiting the effects of gut microbiota-derived 5-HT in constipation-related disease. We genetically engineered the probiotic Escherichia coli Nissle 1917 (EcN-5-HT) for synthesizing 5-HT in situ. The ability of EcN-5-HT to secrete 5-HT in vitro and in vivo was confirmed. Then, we examined the effects of EcN-5-HT on intestinal motility in a loperamide-induced constipation mouse model. After two weeks of EcN-5-HT oral gavage, the constipation-related symptoms were relieved and gastrointestinal motility were enhanced. Meanwhile, administration of EcN-5-HT alleviated the constipation related depressive-like behaviors. We also observed improved microbiota composition during EcN-5-HT treatment. This work suggests that gut microbiota-derived 5-HT might promise a potential therapeutic strategy for constipation and related behavioral disorders.
Collapse
Affiliation(s)
- Bei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Min Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Rong Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Wei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
- *Correspondence: Wei Li, ; Zhi Liu,
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
- *Correspondence: Wei Li, ; Zhi Liu,
| |
Collapse
|
7
|
Xu Z, Jiang Y, Mu W, Li W, Zhang G, Jiang S, Xu P. Electrophysiological, biomechanical, and finite element analysis study of sacral nerve injury caused by sacral fracture. Front Bioeng Biotechnol 2022; 10:920991. [PMID: 36213062 PMCID: PMC9532616 DOI: 10.3389/fbioe.2022.920991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: We aimed to study the mechanism of sacral nerve injury caused by sacral fractures and the relationship between nerve decompression and nerve function.Methods: First, we observed the anatomical features of lumbosacral nerve root region in Sprague-Dawley rats. Next, the rats were divided into the sham, 10 g, 30 g, and 60 g groups for electrophysiological studies on nerve root constriction injury. Then we studied the biomechanical properties of rat nerve roots, lumbosacral trunk, and sacrum. Finally, we established a finite element analysis model of sacral nerve roots injury in rats and determined the correlation between sacral deformation and the degree of sacral nerve roots injury.Result: Anatomical study showed L5 constitutes sciatic nerve, the length of the L5 nerve root is 3.67 ± 0.15 mm, which is suitable for electrophysiological research on nerve root compression injury. After a series of electrophysiological study of L5 nerve roots, our results showed that nerve root function was almost unaffected at a low degree of compression (10 g). Nerve root function loss began at 30 g compression, and was severe at 60 g compression. The degree of neurological loss was therefore positively correlated with the degree of compression. Combining biomechanical testing of the lumbosacral nerve roots, finite element analysis and neuroelectrophysiological research, we concluded when the sacral foramina deformation is >22.94%, the sacral nerves lose function. When the compression exceeds 33.16%, early recovery of nerve function is difficult even after decompression.Conclusion: In this study, we found that the neurological loss was positively correlated with the degree of compression. After early decompression, nerve root function recovery is possible after moderate compression; however, in severe compression group, the nerve function would not recover. Furthermore, FEA was used to simulate nerve compression during sacral fracture, as well as calculate force loading on nerve with different deformation rates. The relationship between sacral fractures and neurological loss can be analyzed in combination with neurophysiological test results.
Collapse
Affiliation(s)
- Zisheng Xu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yifei Jiang
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Weidong Mu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wenlong Li
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Laiwu People’s Hospital, Jinan, China
| | - Guanjun Zhang
- Laiwu People’s Hospital, Jinan, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
| | - Shichao Jiang
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Peng Xu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Orthopaedic trauma, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Peng Xu,
| |
Collapse
|
8
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Effects of sacral nerve stimulation on neuronal nitric oxide synthase in the colon and sacral cord of rats with defecation disorder after spinal cord injury. World Neurosurg 2022; 164:e214-e223. [DOI: 10.1016/j.wneu.2022.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|
10
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
11
|
Zhang CY, Peng XX, Shao HQ, Li XY, Wu Y, Tan ZJ. Gut Microbiota Comparison Between Intestinal Contents and Mucosa in Mice With Repeated Stress-Related Diarrhea Provides Novel Insight. Front Microbiol 2021; 12:626691. [PMID: 33708183 PMCID: PMC7940357 DOI: 10.3389/fmicb.2021.626691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Repeated stress-related diarrhea is a kind of functional bowel disorders (FBDs) that are mainly stemming from dysregulation of the microbiota–gut–brain axis mediated by a complex interplay of 5-hydroxytryptophan (5-HT). Intestinal content and intestinal mucosa microbiota belong to two different community systems, and the role of the two microbiota community systems in repeated stress-related diarrhea remains largely unknown. In order to ascertain the difference in composition and the potential function between intestinal content and intestinal mucosa microbiota response on repeated stress-related diarrhea, we collected intestinal contents and mucosa of mice with repeated stress-related diarrhea for 16S rRNA PacBio SMRT gene full-length sequencing, and with the digital modeling method of bacterial species abundance, the correlations among the two microbiota community systems and serum 5-HT concentration were analyzed. We found that the microbiotal composition differences both in intestinal contents and mucosa were consistent throughout all the phylogenetic ranks, with an increasing level of resolution. Compared with intestinal content microbiota, the diversity and composition of microbiota colonized in intestinal mucosa are more sensitive to repeated stress-related diarrhea. The PICRUSt2 of metagenomic function analysis found that repeated stress-related diarrhea is more likely to perturb the intestinal mucosa microbiota metagenomic functions involved in the neural response. We further found that the mucosal microbiota-based relative abundance model was more predictive on serum 5-HT concentration with the methods of machine-learning model established and multivariate dimensionality reduction (R2 = 0.876). These findings suggest that the intestinal mucosa microbiota might serve as a novel potential prediction model for the serum 5-HT concentration involvement in the repeated stress-related diarrhea, in addition to focusing on its mechanism in the gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Key Laboratory of Traditional Chinese Medicine (TCM) Prescription and Syndromes Translational Medicine, Changsha, China
| | - Xin-Xin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hao-Qing Shao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Ya Li
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhou-Jin Tan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Key Laboratory of Traditional Chinese Medicine (TCM) Prescription and Syndromes Translational Medicine, Changsha, China
| |
Collapse
|