1
|
Wen J, Lin Z, Cheng J, Li C, Wang L, Zou Y, Wan X, Liu J, Wu J. Heat acclimation alleviates the heat stress-induced impairment of vascular endothelial cells. Tissue Cell 2024; 90:102520. [PMID: 39137536 DOI: 10.1016/j.tice.2024.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Heat acclimation (HA) is found to help decrease the incidence of heat-related illnesses such as heat syncope and exertional heat stroke. However, the response of vascular endothelial cells to HA remain to be elucidated. In this study, mouse brain microvascular endothelial cells (bEnd.3), human umbilical vein endothelial cells (HUVEC), and human aortic endothelial cells (HAEC) were selected. The cells were first subjected to HA at 40 ℃ for 2 h per day for 3 days, and then subjected to heat stress at 43 ℃ for 2 h or 4 h. After heat stress, HA-pretreated cells showed a significant increase in cell viability, cell integrity, a decrease in the proportion of S phase cells, cell apoptosis, and cytoskeletal shrinkage compared with the cells without HA pretreatment. Additionally, the expression of VEGF, ICAM-1, iNOS and EPO in HA-pretreated cells significantly increased. We also presented evidence that HA upregulated HSP70 and bcl-2, while downregulated p-p53 and bax. Notably, the suppression of HSP70 expression attenuated the protective role of heat acclimation. Furthermore, HA mitigated injuries in vital organs of mice exposed to heat stress. Conclusively, these findings indicated the HA can increase the vitality of vascular endothelial cells after heat stress, partially restore the function of vascular endothelial cells, and this protective effect may be related to the upregulation of HSP70 expression.
Collapse
Affiliation(s)
- Jirui Wen
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China; Med-X Center for Manufaturing, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Zhengdong Lin
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Juan Cheng
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Can Li
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Ling Wang
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Yuhao Zou
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Xuehong Wan
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Jifeng Liu
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China.
| | - Jiang Wu
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China; Med-X Center for Manufaturing, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China.
| |
Collapse
|
2
|
Szydełko J, Czop M, Petniak A, Lenart-Lipińska M, Kocki J, Zapolski T, Matyjaszek-Matuszek B. Identification of plasma miR-4505, miR-4743-5p and miR-4750-3p as novel diagnostic biomarkers for coronary artery disease in patients with type 2 diabetes mellitus: a case-control study. Cardiovasc Diabetol 2024; 23:278. [PMID: 39080630 PMCID: PMC11287982 DOI: 10.1186/s12933-024-02374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are commonly coexisting clinical entities with still growing incidence worldwide. Recently, circulating microRNAs (miRNAs) have emerged as novel molecular players in cardiometabolic diseases. This study aimed to identify a specific miRNA signature as a candidate biomarker for CAD in T2DM and to delineate potential miRNA-dependent mechanisms contributing to diabetic atherosclerosis. METHODS A total of 38 plasma samples from T2DM patients with and without CAD, CAD patients and healthy controls were collected for expression profiling of 2,578 miRNAs using microarrays. To investigate the regulatory role of differentially expressed (DE)-miRNA target genes, functional annotation and pathway enrichment analyses were performed utilizing multiple bioinformatics tools. Then, protein-protein interaction networks were established leveraging the STRING database in Cytoscape software, followed by cluster analysis and hub gene identification. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was carried out for microarray data validation in the larger replication cohort of 94 participants. Receiver operating characteristic analysis was applied to evaluate the diagnostic values of miRNAs. Multivariate logistic regression analysis was used to develop miRNA-based diagnostic models. RESULTS In the discovery stage, overexpression of hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-6846-5p, and down-regulation of hsa-miR-3613-3p, hsa-miR-4668-5p, hsa-miR-4706, hsa-miR-6511b-5p, hsa-miR-6750-5p, hsa-miR-4750-3p, hsa-miR-320e, hsa-miR-4717-3p, hsa-miR-7850-5p were detected in T2DM-CAD patients. The DE-miRNA target genes were significantly enriched in calcium ion binding, regulation of actin cytoskeleton, and gene expression. hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p were found to be involved in fatty acid metabolism, leukocyte transendothelial migration, and neurotrophin signaling pathway. Dysregulation of hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p in T2DM-CAD patients compared with T2DM subjects and controls (all p < 0.001) was further confirmed by RT-qPCR. All validated miRNAs demonstrated good discriminatory values for T2DM-CAD (AUC = 0.833-0.876). The best performance in detecting CAD in T2DM was achieved for a combination of three miRNAs (AUC = 0.959, 100% sensitivity, 86.67% specificity). CONCLUSIONS Our study revealed a unique profile of plasma-derived miRNAs in T2DM patients with CAD. Potential miRNA-regulated pathways were also identified, exploring the underlying pathogenesis of CAD in T2DM. We developed a specific three-miRNA panel of hsa-miR-4505, hsa-miR-4743-5p and hsa-miR-4750-3p, that could serve as a novel non-invasive biomarker for CAD in patients with T2DM.
Collapse
Affiliation(s)
- Joanna Szydełko
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
3
|
Zhang L, Luo X, Tang R, Wu Y, Liang Z, Liu J, Pi J, Zhang H. MiR-106a-5p by Targeting MAP3K2 Promotes Repair of Oxidative Stress Damage to the Intestinal Barrier in Prelaying Ducks. Animals (Basel) 2024; 14:1037. [PMID: 38612276 PMCID: PMC11010895 DOI: 10.3390/ani14071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Under caged stress conditions, severe disruptions in duck intestinal barrier function, which adversely affect economic performance, have been observed. MiRNAs play a crucial role in cellular processes, but the mechanisms underlying their involvement in repairing oxidative stress-induced damage to duck intestinal barriers have not been elucidated. We performed miRNA-seq and protein tandem mass tagging (TMT) sequencing and identified differentially expressed miRNAs and proteins in oxidative stress-treated ducks. Dual-luciferase reporter vector experiments, RT-qPCR, and Western blotting revealed the regulatory role of apla-miR-106a-5p/MAP3K2 in intestinal barrier damage repair. The results showed that oxidative stress led to shortened villi and deepened crypts, impairing intestinal immune function. Significant downregulation of apla-miR-106a-5p was revealed by miRNA-seq, and the inhibition of its expression not only enhanced cell viability but also improved intestinal barrier function. TMT protein sequencing revealed MAP3K2 upregulation in caged-stressed duck intestines, and software analysis confirmed MAP3K2 as the target gene of apla-miR-106a-5p. Dual-fluorescence reporter gene experiments demonstrated direct targeting of MAP3K2 by apla-miR-106a-5p. RT-qPCR showed no effect on MAP3K2 expression, while Western blot analysis indicated that MAP3K2 protein expression was suppressed. In summary, apla-miR-106a-5p targets MAP3K2, regulating gene expression at the transcriptional level and facilitating effective repair of intestinal barrier damage. This discovery provides new insights into the molecular mechanisms of physiological damage in ducks under caged stress, offering valuable guidance for related research.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiang Luo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Rui Tang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Yan Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Zhenhua Liang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Jinsong Pi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| | - Hao Zhang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.Z.); (X.L.); (R.T.); (Y.W.); (Z.L.); (J.P.)
| |
Collapse
|
4
|
Jia QJ, Yao CL. p38 MAPK involvement in the thermal stress response occurs via HSP27 and caspase3 in the large yellow croaker (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110912. [PMID: 37918461 DOI: 10.1016/j.cbpb.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
The p38 mitogen-activated protein kinase (p38 MAPK) is a multifunctional molecule that is involved in cellular response to various stressful stimuli. In the present study, the full-length cDNA sequence of p38 MAPK (Lcp38 MAPK) was identified from the large yellow croaker Larimichthys crocea, which encoded a polypeptide of 361 amino acid residues. The predicted Lcp38 MAPK protein contained a highly conserved Thr-Gly-Tyr (TGY) motif, a glutamate and aspartate (ED) site, a substrate binding site (Ala-Thr-Arg-Trp < ATRW>), and a serine/threonine kinase catalytic (S_TKc) domain characteristic of the MAPK family. The constitutive expression of Lcp38 MAPK was detected in most of the tissues examined with the strongest expression in intestine. Subcellular localization in LCK cells (kidney cell line from a L. crocea) revealed that Lcp38 MAPK existed in both the cytoplasm and cell nucleus. The expression of Lcp38 MAPK after temperature stress was tested in LCK cells. The results indicated that Lcp38 MAPK transcripts were significantly upregulated under both cold (10 °C) and heat stress (35 °C) (P < 0.05). Furthermore, the phosphorylation levels of p38 MAPK as well the transcriptional levels of heat shock protein 27 (HSP27) and caspase3 in LCK cells were significantly induced under thermal exposure (P < 0.05). However, the cold- and heat induced HSP27 and caspase3 expression was significantly suppressed by SB203580, a specific inhibitor of p38-MAPK (P < 0.05). These findings indicated that Lcp38 MAPK might be involved in the cellular stress response via HSP27 and caspase3 in large yellow croaker.
Collapse
Affiliation(s)
- Qiao-Jing Jia
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Otolaryngology Department, the Second Hospital of Hebei Medical University, Shijiazhuang 05000, China
| | - Cui-Luan Yao
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
5
|
Xiong Y, Li B, Wang K, Li J, He S. Betaine ameliorates heat stress-induced apoptosis by affecting oxidative and endoplasmic reticulum stress in mouse Leydig cells. Biosci Biotechnol Biochem 2023; 88:53-62. [PMID: 37863837 DOI: 10.1093/bbb/zbad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
In order to explore the potential protective role of betaine in heat stress (HS)-elicited apoptosis in mouse Leydig cells (mLCs). Betaine at 16 mm exerted a greater inhibitory effect on HS-induced viability attenuation of cells, which also significantly suppressed the heat shock protein 70 level in HS-treated cells. Furthermore, betaine ameliorated certain negative effects, including increased cell apoptotic ratio, enhancement of apoptosis-related modulator caspase-3 activity, reduced activity levels of such antioxidant enzymes as SOD, CAT, GSH-Px, and MDA upregulation, and inhibited the protein levels of critical endoplasmic reticulum (ER) stress indices like CHOP and GRP78 in mLCs exposed to HS. Besides, treatment of cells with betaine significantly restored diminished testosterone production in response to HS. Correspondingly, betaine effectively rescued the reduced serum testosterone concentration in vivo. In summary, betaine ameliorated HS-induced apoptosis by affecting oxidative and ER stress, thereby providing benefits for the treatment of hyperthermia-related impairment in mLCs.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Bing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Kang Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Shaojun He
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China
| |
Collapse
|
6
|
Li F, Zhou F, Yang B. MicroRNA152-3p Protects Against Ischemia/Reperfusion-Induced Bbb Destruction Possibly Targeting the MAP3K2/JNK/c-Jun Pathway. Neurochem Res 2022; 48:1293-1304. [PMID: 36445489 PMCID: PMC10066145 DOI: 10.1007/s11064-022-03828-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
AbstractIn the current study, we reported that overexpression of miR-152-3p effectively ameliorated neurological deficits and protected blood-brain barrier(BBB) integrity in middle cerebral artery occlusion (MCAO) rats. In an in vitro model, the level of miR-152-3p was significantly decreased in bEnd.3 cells after oxygen–glucose deprivation/reperfusion (OGD/R) insult. miR-152-3p overexpressing bEnd.3 cell monolayers were protected from OGD/R-induced microvascular hyperpermeability. The miR-152-3p-mediated protective effect was associated with lower apoptosis of endothelia by negatively modulating the MAP3K2/JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fangfang Zhou
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binbin Yang
- Department of Neurology, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|