1
|
Zhang J, Luo X, Yang X, Wang B, Zheng L, Yan S. A positive FOXP3/lncRNA SNHG1 feedback axis ameliorates cardiomyocytes hypertrophy by negatively regulating Parkin-mediated mitophagy. Int Immunopharmacol 2024; 137:112526. [PMID: 38908088 DOI: 10.1016/j.intimp.2024.112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
In this study, we identified FOXP3 as a transcription factor for lncRNA SNHG1, which exerts a significant protective role against cardiomyocyte hypertrophy. Through DNA-pull down experiments and ChIP analysis, we confirmed that FOXP3 could bind to the promoter of SNHG1. Luciferase reporter and RT-qPCR experiments validated that FOXP3 overexpression promoted SNHG1 expression in cardiomyocytes. Furthermore, in a model of cardiomyocyte hypertrophy, FOXP3 expression was upregulated, particularly in cardiomyocytes. Functional assays demonstrated that FOXP3 overexpression inhibited cardiomyocyte hypertrophy, while FOXP3 knockdown held the opposite effect. Additionally, we revealed that lncRNA SNHG1 acted as a sponge for miR-182, miR-326, and miR-3918, thereby stabilizing FOXP3 mRNA in cardiomyocytes. The protective role of SNHG1 against cardiomyocyte hypertrophy was found to depend on the presence of FOXP3, forming a positive FOXP3/SNHG1 feedback axis. Moreover, we unveiled this positive FOXP3/SNHG1 feedback axis suppressed cardiomyocyte hypertrophy by negatively regulating Parkin-mediated mitophagy. These findings provide novel insights into the molecular mechanisms underlying cardiomyocyte hypertrophy and offer potential therapeutic targets for related interventions.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, Jiangsu, China
| | - Xuemei Luo
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Xian Yang
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China
| | - Baoyan Wang
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210008, Jiangsu, China.
| | - Simin Yan
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
2
|
Liu L, Wu J, Lu C, Ma Y, Wang J, Xu J, Yang X, Zhang X, Wang H, Xu J, Zhang J. WTAP-mediated m 6A modification of lncRNA Snhg1 improves myocardial ischemia-reperfusion injury via miR-361-5p/OPA1-dependent mitochondrial fusion. J Transl Med 2024; 22:499. [PMID: 38796415 PMCID: PMC11128115 DOI: 10.1186/s12967-024-05330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is caused by reperfusion after ischemic heart disease. LncRNA Snhg1 regulates the progression of various diseases. N6-methyladenosine (m6A) is the frequent RNA modification and plays a critical role in MIRI. However, it is unclear whether lncRNA Snhg1 regulates MIRI progression and whether the lncRNA Snhg1 was modified by m6A methylation. METHODS Mouse cardiomyocytes HL-1 cells were utilized to construct the hypoxia/reoxygenation (H/R) injury model. HL-1 cell viability was evaluated utilizing CCK-8 method. Cell apoptosis, mitochondrial reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were quantitated utilizing flow cytometry. RNA immunoprecipitation and dual-luciferase reporter assays were applied to measure the m6A methylation and the interactions between lncRNA Snhg1 and targeted miRNA or target miRNAs and its target gene. The I/R mouse model was constructed with adenovirus expressing lncRNA Snhg1. HE and TUNEL staining were used to evaluate myocardial tissue damage and apoptosis. RESULTS LncRNA Snhg1 was down-regulated after H/R injury, and overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization. Besides, lncRNA Snhg1 could target miR-361-5p, and miR-361-5p targeted OPA1. Overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization though the miR-361-5p/OPA1 axis. Furthermore, WTAP induced lncRNA Snhg1 m6A modification in H/R-stimulated HL-1 cells. Moreover, enforced lncRNA Snhg1 repressed I/R-stimulated myocardial tissue damage and apoptosis and regulated the miR-361-5p and OPA1 levels. CONCLUSION WTAP-mediated m6A modification of lncRNA Snhg1 regulated MIRI progression through modulating myocardial apoptosis, mitochondrial ROS production, and mitochondrial polarization via miR-361-5p/OPA1 axis, providing the evidence for lncRNA as the prospective target for alleviating MIRI progression.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiahong Wu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Yan Ma
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiayi Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jie Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Xiaoli Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Hua Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jieyu Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
3
|
Zhang M, Xu B, Li W, Yu B, Peng H, Gui F, Ai F, Chen Z. lncRNA CCAT2 Protects Against Cardiomyocyte Injury After Myocardial Ischemia/Reperfusion by Regulating BMI1 Expression. Int Heart J 2024; 65:279-291. [PMID: 38556336 DOI: 10.1536/ihj.23-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) decreases cardiac function and efficiency. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) have been linked to the cellular processes of myocardial I/R injury. The present investigation elucidated the function of lncRNA colon cancer-associated transcript 2 (CCAT2) in myocardial I/R injury and the related mechanisms.AC16 cardiomyocytes were exposed to hypoxia (16 hours) /reoxygenation (6 hours) (H/R) to mimic myocardial I/R models in vitro. CCAT2 and microRNA (miR) -539-3p expressions in AC16 cardiomyocytes were measured using real-time quantitative polymerase chain reaction. B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) protein levels in AC16 cardiomyocytes were determined by western blotting. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and apoptosis were detected using Counting Kit-8, LDH Assay Kit, dihydroethidium assay, 5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide staining, flow cytometry, and western blotting, respectively. The interactions between the molecules were confirmed using the dual-luciferase gene reporter. The wingless/integrated/beta-catenin (Wnt/β-catenin) pathway under the H/R condition was detected by western blotting.CCAT2 and BMI1 mRNA expressions were reduced in H/R-exposed AC16 cardiomyocytes. CCAT2 overexpression exerted protective effects against H/R-induced cardiomyocyte injury, as demonstrated by increased cell viability and mitochondrial membrane potential and decreased LDH leakage, ROS levels, and apoptosis. In addition, CCAT2 positively regulated BMI1 expression by binding to miR-539-3p. CCAT2 knockdown or miR-539-3p overexpression restrained the protective effects of BMI1 against H/R-induced cardiomyocyte injury. In addition, miR-539-3p overexpression reversed the protective effects of CCAT2. Furthermore, CCAT2 activated the Wnt/β-catenin pathway under the H/R condition via the miR-539-3p/BMI1 axis.Overall, this investigation showed the protective effects of the CCAT2/miR-539-3p/BMI1/Wnt/β-catenin regulatory axis against cardiomyocyte injury induced by H/R.
Collapse
Affiliation(s)
- Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Bei Xu
- Department of Cardiovasology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
4
|
Yang N, Song Y, Li Y, Dong B, Yang J, Guo Z. Characterization of lncRNA-associated ceRNA network to uncover novel potential biomarkers in coronary artery disease. Medicine (Baltimore) 2023; 102:e35913. [PMID: 38013355 PMCID: PMC10681391 DOI: 10.1097/md.0000000000035913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
The purpose of this study was to construct a competitive endogenous RNA (ceRNA) network related to long non-coding RNA (lncRNAs) via the bioinformatics analysis, reveal the pathogenesis of coronary heart disease (CAD) and develop new biomarkers for CAD. The gene expression datasets of peripheral blood of CAD were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were identified. Subsequently, a ceRNA network involving lncRNAs, miRNAs, and mRNAs was built. Moreover, DElncRNAs in the cytoplasm were screened and a DElncRNA-associated ceRNA network was established. In total, 1860 DEmRNAs, 393 DElncRNAs and 20 DEmiRNAs were filtrated in patients with CAD compared with normal controls. Functional analysis suggested that DEmRNAs significantly enriched in CAD-related pathways, such as PI3K-Akt signaling pathways and MAPK signaling pathway. The ceRNA network contained 12 DEmiRNAs, 30 DElncRNAs and 537 DEmRNAs. Afterwards, the cytoplasm ceRNA network was consisted of 537 DEmRNAs, 12 DEmiRNAs and 12 DElncRNAs. Such as, up-regulated LncRNA-HOX transcript antisense RNA (HOTAIR) was interacted with down-regulated has-miR-326 and has-miR-1. The successful construction of lncRNA-associated ceRNA network is helpful to better clarify the pathogenesis of CAD and provide potential peripheral blood biomarkers for CAD.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiology Research, Tianjin Chest Hospital, Tianjin, China
| | - Yang Li
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Bo Dong
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jingyu Yang
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovasular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
5
|
Chen Y, Deng Y, Chen L, Huang Z, Yan Y, Huang Z. miR-16-5p Regulates Ferroptosis by Targeting SLC7A11 in Adriamycin-Induced Ferroptosis in Cardiomyocytes. J Inflamm Res 2023; 16:1077-1089. [PMID: 36941983 PMCID: PMC10024494 DOI: 10.2147/jir.s393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Adriamycin (ADR) is commonly used in tumor chemotherapy, but its nonreversible cardiotoxicity severely hampers its clinical application. Ferroptosis is an implicated cause of ADR-induced injury. However, the underlying molecular mechanisms remain poorly understood. This study explored whether ferroptosis is a pivotal pathogenic pathway underlying ADR-induced cardiotoxicity and the possible molecular mechanisms involved. Methods In vivo and in vitro experimental models were used to study the mechanism of ADR-mediated ferroptosis. Ferroptosis levels were examined in mice and human/rat cardiomyocytes. Mechanistically, the expression levels of SLC7A11 and related miRNAs were examined. Bioinformatics prediction and luciferase reporter assays were used to verify the potential interaction between miR-16-5p and SLC7A11. The biological functions and interaction of SLC7A11 and miR-16-5p were investigated in vivo and in vitro. Results Our study observed that ADR treatment significantly increased ferroptosis levels in vivo and in vitro. Ferroptosis-related pharmacological interventions further confirmed these results. Our data displayed that the SLC7A11 level was significantly decreased in cardiac tissues and cells, while an increased expression level of miR-16-5p was observed. Moreover, upregulation of SLC7A1 and inhibition of miR-16-5p attenuated ADR-induced cardiomyocyte ferroptosis injury. Interactive rescue experiments showed that the protective effects of miR-16-5p inhibition on ADR-induced cardiomyocyte injury were blocked by SLC7A11 knockdown. Discussion Based on these findings, targeting miR-16-5p could partially reverse the ADR-induced cardiotoxicity by rescuing the SLC7A11 to attenuate ferroptosis. This study presents a pre-clinical basis to identify miR-16-5p/SLC7A11 as a potential treatment target for ADR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yongquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yecheng Deng
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linghua Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ziyao Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yi Yan
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhaoqi Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
7
|
Major Role for Cellular MicroRNAs, Long Noncoding RNAs (lncRNAs), and the Epstein-Barr Virus-Encoded BART lncRNA during Tumor Growth
In Vivo. mBio 2022; 13:e0065522. [PMID: 35435703 PMCID: PMC9239068 DOI: 10.1128/mbio.00655-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study assessed the effects of Epstein-Barr virus (EBV) and one form of virally encoded BART long noncoding RNAs (lncRNAs) on cellular expression in epithelial cells grown in vitro and as tumors in vivo determined by high-throughput RNA sequencing of mRNA and small RNAs. Hierarchical clustering based on gene expression distinguished the cell lines from the tumors and distinguished the EBV-positive tumors and the BART tumors from the EBV-negative tumors. EBV and BART expression also induced specific expression changes in cellular microRNAs (miRs) and lncRNAs. Multiple known and predicted targets of the viral miRs, the induced cellular miRs, and lncRNAs were identified in the altered gene set. The changes in expression in vivo indicated that the suppression of growth pathways in vivo reflects increased expression of cellular miRs in all tumors. In the EBV and BART tumors, many of the targets of the induced miRs were not changed and the seed sequences of the nonfunctional miRs were found to have homologous regions within the BART lncRNA. The inhibition of these miR effects on known targets suggests that these induced miRs have reduced function due to sponging by the BART lncRNA. This composite analysis identified the effects of EBV on cellular miRs and lncRNAs with a functional readout through identification of the simultaneous effects on gene expression. Major shifts in gene expression in vivo are likely mediated by effects on cellular noncoding RNAs. Additionally, a predicted property of the BART lncRNA is to functionally inhibit the induced cellular miRs.
Collapse
|