1
|
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6:291. [PMID: 34344870 PMCID: PMC8333067 DOI: 10.1038/s41392-021-00687-0] [Citation(s) in RCA: 643] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of receptors that can directly recognize the specific molecular structures on the surface of pathogens, apoptotic host cells, and damaged senescent cells. PRRs bridge nonspecific immunity and specific immunity. Through the recognition and binding of ligands, PRRs can produce nonspecific anti-infection, antitumor, and other immunoprotective effects. Most PRRs in the innate immune system of vertebrates can be classified into the following five types based on protein domain homology: Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and absent in melanoma-2 (AIM2)-like receptors (ALRs). PRRs are basically composed of ligand recognition domains, intermediate domains, and effector domains. PRRs recognize and bind their respective ligands and recruit adaptor molecules with the same structure through their effector domains, initiating downstream signaling pathways to exert effects. In recent years, the increased researches on the recognition and binding of PRRs and their ligands have greatly promoted the understanding of different PRRs signaling pathways and provided ideas for the treatment of immune-related diseases and even tumors. This review describes in detail the history, the structural characteristics, ligand recognition mechanism, the signaling pathway, the related disease, new drugs in clinical trials and clinical therapy of different types of PRRs, and discusses the significance of the research on pattern recognition mechanism for the treatment of PRR-related diseases.
Collapse
Affiliation(s)
- Danyang Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Eiro N, Carrión JF, Cid S, Andicoechea A, García-Muñiz JL, González LO, Vizoso FJ. Toll-Like Receptor 4 and Matrix Metalloproteases 11 and 13 as Predictors of Tumor Recurrence and Survival in Stage II Colorectal Cancer. Pathol Oncol Res 2019; 25:1589-1597. [PMID: 30710321 DOI: 10.1007/s12253-019-00611-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Current clinical-pathologic stratification factors do not allow clear identification of high-risk stage II colorectal cancer (CRC) patients. Therefore, the identification of additional prognostic markers is desirable. Toll-like receptor (TLR)-4 is activated during tumorigenesis and matrix metalloproteases (MMPs) are involved in invasion and metastasis. We aimed to evaluate the expression and clinical relevance of TLR4, MMP11 and MMP13 for patients with stage II CRC. Immunohistochemistry was used to study the expression of TLR4, MMP11 and MMP13 in 96 patients with stage II CRC. We measured the global expression and the expression by different cell types (tumor cells, cancer-associated fibroblasts (CAFs) and mononuclear inflammatory cells (MICs)). The potential relationship between expressions of factors and different prognostic variables were evaluated. Our results show significant relationships between either TLR4 expression by tumor cells and MMP11 expression by CAFs and high risk of tumor recurrence. In addition, the concurrence of age ≥ 75 years and the non-expression of MMP11 by CAFs identify a subgroup of patients with a good prognosis. Our results show that TLR4 expression by tumor cells and MMP11 expression by CAFs may to improve the identification of patients with stage II CRC with a high-risk of relapse.
Collapse
Affiliation(s)
- Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Juan Francisco Carrión
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Sandra Cid
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Alejandro Andicoechea
- Servicio de Cirugía General, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - José Luis García-Muñiz
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
- Servicio de Anatomía Patológica, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain.
- Servicio de Cirugía General, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain.
| |
Collapse
|
3
|
Shao Y, Shen Y, Chen T, Xu F, Chen X, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget 2018; 7:60736-60751. [PMID: 27517627 PMCID: PMC5312416 DOI: 10.18632/oncotarget.11177] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm. They can be secreted by all cell types and transfer information in the form of their contents, which include proteins, lipids and nucleic acids, to other cells throughout the body. They have roles in normal physiological processes as well as in disease development. Here, we review recent findings regarding tumor-derived exosomes, including methods for their extraction and preservation. We also describe the actions of exosomes in tumorigenesis. The exosomal antigen-presenting effect during antitumor immune responses and its suppressive function in immune tolerance are discussed. Finally, we describe the potential application of exosomes to cancer therapy and liquid biopsy.
Collapse
Affiliation(s)
- Yingkuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanwei Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuewen Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Abstract
The objective of the study is to investigate the CXCR5 and MMP-13 expression in colorectal cancer and explore its correlation between the clinicopathological characteristics and prognosis. The expressions of CXCR5 and MMP-13 proteins in 236 paired specimens of colorectal cancer and incisal edge normal tissues as well as 62 samples of colorectal adenoma tissues were analyzed by immunohistochemistry. The CXCR5 and MMP-13 positive expression rate in colorectal cancer tissues was 43.6 and 80.5 %, respectively. Both rates were higher than those in the incisal edge healthy intestinal mucosal tissues (4.2 and 13.1 %) and colorectal adenoma tissues (24.2 and 64.5 %), P < 0. 05 in both cases. The expressions of the CXCR5 and MMP-13 proteins were positively related to the lymph node and distal metastasis, tumor stage and relapse, P < 0. 05. The expression of the CXCR5 protein was positively related to MMP-13, P < 0. 05. The median and overall survival in the patients with positive CXCR5 and MMP-13 expression were significantly shorter than those with negative expression: median survival, 20.5 months (CXCR5 +) versus 30.8 months (CXCR5 -), 20.3 months (MMP-13 +) versus 24.6 months; overall survival, 26.5 months (CXCR5 +) versus 47.5 months (CXCR5 -), 22.7 months (MMP-13 +) versus 29.3 months. The expression of CXCR5 and MMP-13 could promote the pathogenesis, development, metastasis, and relapse of colorectal cancer. It could also serve as a valuable indicator for the prediction of metastasis and relapse of colorectal cancer.
Collapse
|
5
|
Wen H, Qin Y, Zhong W, Li C, Liu X, Shen Y. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13. Enzyme Microb Technol 2016; 92:9-17. [PMID: 27542739 DOI: 10.1016/j.enzmictec.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023]
Abstract
Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications.
Collapse
Affiliation(s)
- Hanyu Wen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yuan Qin
- College of Pharmacy, Nankai University, PR China
| | | | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Xiang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| |
Collapse
|
6
|
CpG-ODN promotes phagocytosis and autophagy through JNK/P38 signal pathway in Staphylococcus aureus-stimulated macrophage. Life Sci 2016; 161:51-9. [PMID: 27476088 DOI: 10.1016/j.lfs.2016.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/19/2016] [Accepted: 07/27/2016] [Indexed: 01/14/2023]
Abstract
AIMS Phagocytic and autophagic responses are critical for effective host defense against bacterial infection. Bacterial DNA which contains unmethylated Cytosine-phosphate-Guanine (CpG) motifs can trigger a variety of defense mechanisms via Toll-like receptor 9 (TLR9). Here, we aimed to investigate the underlying mechanism of TLR9-mediated phagocytosis and autophagy in Staphylococcus aureus (S.aureus)-stimulated macrophages. MAIN METHODS The macrophage cell line RAW264.7 or primary peritoneal macrophage was pretreated with CpG-ODN and then stimulated by S. aureus, where some of them were pretreated with SP600125 or SB203580 simultaneously. The protein expressions of TLR9, MyD88, SR-A, CD36, LC3, Beclin-1, and phosphorylated level of c-Jun N-terminal kinase (JNK), P38 and extracellular-regulated protein kinase (ERK) were detected by western blotting. The phagocytosis and LC3 punctate-structures of macrophage were observed by confocal laser scanning microscope. KEY FINDINGS CpG-ODN significantly amplified S. aureus-induced phagocytosis and autophagy of RAW264.7 and TLR9(+/+) primary peritoneal macrophage as compared to that of Non-CpG treated cells, while such effect was abolished in TLR9(-/-) primary peritoneal macrophages. Meanwhile, CpG-ODN significantly enhanced S. aureus-induced phosphorylation of JNK and P38 but not ERK in RAW264.7. Specific inhibition of JNK or P38 by SP600125 or SB203580, dramatically down-regulated CpG-induced phagocytosis and autophagy in S. aureus-stimulated RAW264.7 and TLR9(+/+) primary peritoneal macrophage, while they showed no further down-regulation of phagocytosis and autophagy in TLR9(-/-) primary peritoneal macrophages. SIGNIFICANCE Our data indicated that CpG-ODN activates TLR9-JNK/P38 signaling to promote phagocytosis and autophagy in S. aureus-stimulated macrophages, these findings provide novel insights into how innate immune cells defend bacterial infection via TLR9.
Collapse
|
7
|
Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci U S A 2016; 113:E2189-98. [PMID: 27035978 PMCID: PMC4839466 DOI: 10.1073/pnas.1525096113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions.
Collapse
|
8
|
Tiaden AN, Bahrenberg G, Mirsaidi A, Glanz S, Blüher M, Richards PJ. Novel Function of Serine Protease HTRA1 in Inhibiting Adipogenic Differentiation of Human Mesenchymal Stem Cells via MAP Kinase-Mediated MMP Upregulation. Stem Cells 2016; 34:1601-14. [PMID: 26864869 DOI: 10.1002/stem.2297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/02/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023]
Abstract
Adipogenesis is the process by which mesenchymal stem cells (MSCs) develop into lipid-laden adipocytes. Being the dominant cell type within adipose tissue, adipocytes play a central role in regulating circulating fatty acid levels, which is considered to be of critical importance in maintaining insulin sensitivity. High temperature requirement protease A1 (HTRA1) is a newly recognized regulator of MSC differentiation, although its role as a mediator of adipogenesis has not yet been defined. The aim of this work was therefore to evaluate HTRA1's influence on human MSC (hMSC) adipogenesis and to establish a potential mode of action. We report that the addition of exogenous HTRA1 to hMSCs undergoing adipogenesis suppressed their ability to develop into lipid laden adipocytes. These effects were demonstrated as being reliant on both its protease and PDZ domain, and were mediated through the actions of c-Jun N-terminal kinase and matrix metalloproteinases (MMPs). The relevance of such findings with regards to HTRA1's potential influence on adipocyte function in vivo is made evident by the fact that HTRA1 and MMP-13 were readily identifiable within crown-like structures present in visceral adipose tissue samples from insulin resistant obese human subjects. These data therefore implicate HTRA1 as a negative regulator of MSC adipogenesis and are suggestive of its potential involvement in adipose tissue remodeling under pathological conditions. Stem Cells 2016;34:1601-1614.
Collapse
Affiliation(s)
- André N Tiaden
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland
| | - Gregor Bahrenberg
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ali Mirsaidi
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Stephan Glanz
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Matthias Blüher
- Department of Medicine, Dermatology and Neurology, University of Leipzig, Leipzig, Germany.,Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Peter J Richards
- Bone and Stem Cell Research Group, CABMM, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Gao N, Kumar A, Yu FSX. Matrix Metalloproteinase-13 as a Target for Suppressing Corneal Ulceration Caused by Pseudomonas aeruginosa Infection. J Infect Dis 2015; 212:116-27. [PMID: 25589337 DOI: 10.1093/infdis/jiv016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Pseudomonas aeruginosa keratitis is characterized by severe corneal ulceration. This study investigated whether matrix metalloproteinase-13 (MMP13) is involved in P. aeruginosa-induced corneal ulceration and whether it therefore can be targeted for preventing P. aeruginosa keratitis. METHODS MMP13 expression in P. aeruginosa-infected C57BL/6 mouse corneas was assessed by quantitative polymerase chain reaction and immunohistochemistry analyses. An MMP13-inhibitor (MMP13i) was either injected subconjunctivally prior to or coapplied topically with gatifloxacin 16 hours after infection. Disease severity was assessed by corneal imaging, clinical scoring, bacterial burden, neutrophil infiltration, and CXCL2 expression. Corneal damage and infiltration were also determined by immunohistochemistry analysis and whole-mount confocal microscopy. RESULTS P. aeruginosa infection induced an increased expression of MMP13 in mouse corneas from 6 to 24 hours after infection in a Toll-liked receptor 5-dependent manner. Subconjunctival injection of MMP13i prior to P. aeruginosa inoculation significantly decreased keratitis severity, as evidenced by preserved epithelium integrity and intact basement membrane, leading to reduced bacterial dissemination to the stroma. Furthermore, topical coapplication of MMP13i with gatifloxacin greatly improved disease outcomes, including accelerated opacity dissolution; decreased inflammation, cellular infiltration, and collagen disorganization; and basement membrane preservation. CONCLUSIONS Elevated MMP13 activity may contribute to P. aeruginosa keratitis through basement membrane degradation, and its inhibition could potentially be used as an adjunctive therapy to treat microbial keratitis and other mucosal infections.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ashok Kumar
- Department of Ophthalmology Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Fu-Shin X Yu
- Department of Ophthalmology Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|