1
|
Huang H, Dai Y, Duan Y, Yuan Z, Li Y, Zhang M, Zhu W, Yu H, Zhong W, Feng S. Effective prediction of potential ferroptosis critical genes in clinical colorectal cancer. Front Oncol 2022; 12:1033044. [PMID: 36324584 PMCID: PMC9619366 DOI: 10.3389/fonc.2022.1033044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 08/30/2023] Open
Abstract
Background Colon cancer is common worldwide, with high morbidity and poor prognosis. Ferroptosis is a novel form of cell death driven by the accumulation of iron-dependent lipid peroxides, which differs from other programmed cell death mechanisms. Programmed cell death is a cancer hallmark, and ferroptosis is known to participate in various cancers, including colon cancer. Novel ferroptosis markers and targeted colon cancer therapies are urgently needed. To this end, we performed a preliminary exploration of ferroptosis-related genes in colon cancer to enable new treatment strategies. Methods Ferroptosis-related genes in colon cancer were obtained by data mining and screening for differentially expressed genes (DEGs) using bioinformatics analysis tools. We normalized the data across four independent datasets and a ferroptosis-specific database. Identified genes were validated by immunohistochemical analysis of pathological and healthy clinical samples. Results We identified DEGs in colon cancer that are involved in ferroptosis. Among these, five core genes were found: ELAVL1, GPX2, EPAS1, SLC7A5, and HMGB1. Bioinformatics analyses revealed that the expression of all five genes, except for EPAS1, was higher in tumor tissues than in healthy tissues. Conclusions The preliminary exploration of the five core genes revealed that they are differentially expressed in colon cancer, playing an essential role in ferroptosis. This study provides a foundation for subsequent research on ferroptosis in colon cancer.
Collapse
Affiliation(s)
- Hongliang Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuexiang Dai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Duan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanxuan Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maomao Zhang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Hang Yu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Wenfei Zhong
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Razi Soofiyani S, Ahangari H, Soleimanian A, Babaei G, Ghasemnejad T, Safavi SE, Eyvazi S, Tarhriz V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene 2021; 804:145894. [PMID: 34418469 DOI: 10.1016/j.gene.2021.145894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Esmaeil Safavi
- Faculty of Veternary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Liu LJ, Liao JM, Zhu F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:1425-1439. [PMID: 34721775 PMCID: PMC8529917 DOI: 10.4251/wjgo.v13.i10.1425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including malignancies in the gastrointestinal tract and accessory organs of digestion, represent the leading cause of death worldwide due to the poor prognosis of most GI cancers. An investigation into the potential molecular targets of prediction, diagnosis, prognosis, and therapy in GI cancers is urgently required. Proliferating cell nuclear antigen (PCNA) clamp associated factor (PCLAF), which plays an essential role in cell proliferation, apoptosis, and cell cycle regulation by binding to PCNA, is a potential molecular target of GI cancers as it contributes to a series of malignant properties, including tumorigenesis, epithelial-mesenchymal transition, migration, and invasion. Furthermore, PCLAF is an underlying plasma prediction target in colorectal cancer and liver cancer. In addition to GI cancers, PCLAF is also involved in other types of cancers and autoimmune diseases. Several pivotal pathways, including the Rb/E2F pathway, NF-κB pathway, and p53-p21 cascade, are implicated in PCLAF-mediated diseases. PCLAF also contributes to some diseases through dysregulation of the p53 pathway, WNT signal pathway, MEK/ERK pathway, and PI3K/AKT/mTOR signal cascade. This review mainly describes in detail the role of PCLAF in physiological status and GI cancers. The signaling pathways involved in PCLAF are also summarized. Suppression of the interaction of PCLAF/PCNA or the expression of PCLAF might be potential biological therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jian-Ming Liao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
4
|
Xu Q, Gao S, Miao J. The relationship between autophagy-related genes and the staging and prognosis of thyroid cancer: a bioinformatics analysis. Gland Surg 2021; 10:2511-2527. [PMID: 34527563 DOI: 10.21037/gs-21-480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023]
Abstract
Background The number of patients with thyroid cancer is increasing. Autophagy is closely related to thyroid cancer. This study conducted a bioinformatics analysis to examine the relationship between autophagy-related genes and the prognosis of thyroid cancer. Methods Based on The Cancer Genome Atlas (TCGA) database, the standardized ribonucleic acid (RNA) sequencing data and corresponding clinical records of 497 patients were obtained. The gene set of autophagy-related genes was obtained from reactom [https://reactome.org/; gene set identification: (R-HSA-1632852)]. Based on the completeness of the sequencing and prognostic data, 135 effective genes were screened to form a gene set. A cluster analysis of the genetic expression of the whole genome was conducted. Different groups and subgroups were defined according to the clustering situation. The relationship between the expression levels of different autophagy-related genes and the clinical characteristics of thyroid cancer were analyzed. Results Patients were divided into 2 clusters and 4 subclusters. A comparison of the clinical parameters of the 2 clusters showed that there were differences in node (N)-stage, and a comparison of the 4 subclusters showed that there were differences in age and 4 other characteristics. In relation to the survival comparison, there was a difference in the disease-free survival (DFS) between the 2 clusters, and there was a difference in overall survival (OS) and DFS between subclusters. The 2 clusters had 114 differentially expressed genes (DEGs), and the 4 subclusters had 131 DEGs. In relation to the 5 different factors in each group, there were differences in the distribution of N0N1NX in clusters and subclusters, there were differences in the distribution of M0M1MX in subclusters, and there were differences in the distribution of age and the American Joint Committee on Cancer stage in subclusters. In relation to the stage/N stage/Metastasis (M) stage-related DEGs, 5 common genes were identified: EPAS1, ATG4A, BECN1, ATG4C, and PLIN3. In relation to the stage/N stage/M stage-related DEGs and age-related DEGs 1 common gene was identified: EPAS1. Conclusions Autophagy-related genes are related to the staging of thyroid cancer, but have no clear relationship with long-term prognosis.
Collapse
Affiliation(s)
- Qin Xu
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, China
| | - Shan Gao
- Department of Otolaryngology, Head and Neck Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Jidong Miao
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, China
| |
Collapse
|
5
|
Islam F, Gopalan V, Lu CT, Pillai S, Lam AK. Identification of novel mutations and functional impacts of EPAS1 in colorectal cancer. Cancer Med 2021; 10:5557-5573. [PMID: 34250767 PMCID: PMC8366083 DOI: 10.1002/cam4.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial PAS domain‐containing protein 1 (EPAS1) has implications in many cancers. However, the molecular behaviours, functional roles and mutational status of EPAS1 have never been studied in colorectal carcinoma (CRC). The study aims to examine the genetic alterations and functional roles of EPAS1 in CRC. In addition, the clinical impacts of EPAS1 in CRC were studied. Significant EPAS1 DNA amplification (63.4%; n = 52/82) and consequent mRNA overexpression (72%; n = 59/82) were noted in patients with CRC. In CRC, 16% (n = 13/82) of the patients had mutations in the EPAS1 coding sequence and most of the mutated samples exhibited aberrant DNA changes and mRNA overexpression. We have identified two novel variants, c.1084C>T; p.L362L and c.1121T>G; p.F374C in CRC. These EPAS1 aberrations in CRC were correlated with clinicopathological parameters, including tumour size, histological grade, T‐stages, cancer perforation as well as the presence of synchronous cancer. Also, reduced cell proliferation, wound healing, migration and invasion were noted in colon cancer cells followed by EPAS1 silencing. To conclude, the results obtained from the current study indicated that EPAS1 plays important role in colorectal carcinogenesis, thus, could be useful as a prognostic marker and as a target for therapy development.
Collapse
Affiliation(s)
- Farhadul Islam
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Cu Tai Lu
- Department of Surgery, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Alfred K Lam
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
6
|
Yu S, Li Y, Ren H, Zhou H, Ning Q, Chen X, Hu T, Yang L. PDK4 promotes tumorigenesis and cisplatin resistance in lung adenocarcinoma via transcriptional regulation of EPAS1. Cancer Chemother Pharmacol 2020; 87:207-215. [PMID: 33221963 DOI: 10.1007/s00280-020-04188-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
The use of cisplatin for the treatment of non-small cell lung cancer has long been constrained by the rapid acquisition of tumor cell chemoresistance. In the present study, we sought to better elucidate the molecular mechanisms underlying this resistance phenotype. To that end, we assessed gene expression patterns in cisplatin-resistant lung adenocarcinoma cells, revealing pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4) to be the most up-regulated kinase in resistant cells. We further found PDK4 upregulation to be directly linked with the acquisition of chemoresistance, driving enhanced tumor cell growth in vitro and in vivo. In clinical samples, we also found that PDK4 upregulation was detectable in patients with lung adenocarcinoma and that it was correlated with a poorer prognosis for these patients. From a mechanistic perspective, we further determined that PDK4 was able to promote lung adenocarcinoma cell growth and cisplatin resistance at least in part via regulating endothelial PAS domain-containing protein 1 (EPAS1) expression, thus highlighting PDK4 as a potentially viable therapeutic target in efforts to treat lung adenocarcinoma patients that have become resistant to cisplatin.
Collapse
Affiliation(s)
- Shuo Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Hong Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Tinghua Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
7
|
Zhou Y, Chen R, Luo X, Zhang WD, Qin JJ. The E2 ubiquitin-conjugating enzyme UbcH5c: an emerging target in cancer and immune disorders. Drug Discov Today 2020; 25:S1359-6446(20)30369-X. [PMID: 32947046 DOI: 10.1016/j.drudis.2020.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitination is a crucial post-translational modification (PTM) of proteins and regulates their stabilities and activities, thereby modulating multiple signaling pathways. UbcH5c, a member of the UbcH5 ubiquitin-conjugating enzyme (E2) protein family, engages in the ubiquitination of dozens of proteins and regulates nuclear factor kappa-B (NF-κB), p53 tumor suppressor, and several other essential signaling pathways. UbcH5c has been reported to be abnormally expressed in human cancer and immune disorders and is involved in the initiation and progression of these diseases. In this review, we mainly focus on UbcH5c structure, activity, signaling pathways, and its relevance to cancer and immune disorders. We end by integrating all known factors relating to UbcH5c inhibition as a potential cancer therapy method, and discuss associated challenges.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaofang Luo
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Cancer and Basic Medicine, Chinese Academy of Sciences; Cancer Hospital of the University of Chinese Academy of Sciences; Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
8
|
Islam F, Gopalan V, Law S, Lam AK, Pillai S. Molecular Deregulation of EPAS1 in the Pathogenesis of Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:1534. [PMID: 33042797 PMCID: PMC7518048 DOI: 10.3389/fonc.2020.01534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/17/2020] [Indexed: 12/03/2022] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) is an angiogenic factor and its implications have been reported in many cancers but not in esophageal squamous cell carcinoma (ESCC). Herein, we aim to examine the genetic and molecular alterations, clinical implications, and functional roles of EPAS1 in ESCC. High-resolution melt-curve analysis and Sanger sequencing were used to detect mutations in EPAS1 sequence. EPAS1 DNA number changes and mRNA expressions were analyzed by polymerase chain reaction. in vitro functional assays were used to study the impact of EPAS1 on cellular behaviors. Overall, 7.5% (n = 6/80) of patients with ESCC had mutations in EPAS1, and eight novel variants (c.1084C>T, c.1099C>A, c.1145_1145delT, c.1093C>G, c.1121T>G, c.1137_1137delG, c.1135_1136insT, and c.1091_1092insT) were detected. Among these mutations, four were frameshift (V382Gfs*12, A381Lfs*13, K379Ifs*6, and K364Nfs*12) mutations and showed the potential of non–sense-mediated mRNA decay (NMD) in computational analysis. The majority of patients showed molecular deregulation of EPAS1 [45% (n = 36/80) DNA amplification, 42.5% (n = 34/80) DNA deletion, as well as 53.7% (n = 43/80) high mRNA expression, 20% (n = 16/80) low mRNA expression]. These alterations of EPAS1 were associated with tumor location and T stages. Patients with stage III ESCC having EPAS1 DNA amplification had poorer survival rates in comparison to EPAS1 DNA deletion (p = 0.04). In addition, suppression of EPAS1 in ESCC cells showed reduced proliferation, wound healing, migration, and invasion in comparison to that of control cells. Thus, the molecular and functional studies implied that EPAS1 plays crucial roles in the pathogenesis of ESCC and has the potential to be used as a prognostic marker and as a therapeutic target.
Collapse
Affiliation(s)
- Farhadul Islam
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- School of Medicine, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Simon Law
- Department of Surgery, University of Hong Kong, Hong Kong, China
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Molnár B, Galamb O, Kalmár A, Barták BK, Nagy ZB, Tóth K, Tulassay Z, Igaz P, Dank M. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn 2019; 19:477-498. [PMID: 31046485 DOI: 10.1080/14737159.2019.1613891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Screening methods for one of the most frequently diagnosed malignancy, colorectal cancer (CRC), have limitations. Circulating cell-free nucleic acids (cfNA) hold clinical relevance as screening, prognostic and therapy monitoring markers. Area covered: In this review, we summarize potential CRC-specific cfNA biomarkers, the recently developed sample preparation techniques, their applications, and pitfalls. Expert opinion: Automated extraction of cfDNA is highly reproducible, however, cfDNA yield is less compared to manual isolation. Quantitative and highly sensitive detection techniques (e.g. digital PCR, NGS) can be applied to analyze genetic and epigenetic changes. Detection of DNA mutations or methylation in cfDNA and related altered levels of mRNA, miRNA, and lncRNA may improve early cancer recognition, based on specific, CRC-related patterns. Detection of cfDNA mutations (e.g. TP53, KRAS, APC) has limited diagnostic sensitivity (40-60%), however, methylated DNA including SEPT9, SFRP1, SDC2 can be applied with higher sensitivity (up to 90%) for CRC. Circulating miRNAs (e.g. miR-21, miR-92, miR-141) provide comparably high sensitivity for CRC as the circulating tumor cell mRNA markers (e.g. EGFR, CK19, CK20, CEA). Automation of cfNA isolation coupled with quantitative analysis of CRC-related, highly sensitive biomarkers may enhance CRC screening and early detection in the future.
Collapse
Affiliation(s)
- Béla Molnár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Orsolya Galamb
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Alexandra Kalmár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Barbara Kinga Barták
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsófia Brigitta Nagy
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Kinga Tóth
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsolt Tulassay
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Péter Igaz
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Magdolna Dank
- c Department of Oncology , Semmelweis University , Budapest , Hungary
| |
Collapse
|
10
|
Yan R, Zhu K, Dang C, Lan K, Wang H, Yuan D, Chen W, Meltzer SJ, Li K. Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response. Oncotarget 2018; 7:38750-38761. [PMID: 27246972 PMCID: PMC5122426 DOI: 10.18632/oncotarget.9606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/26/2016] [Indexed: 01/12/2023] Open
Abstract
Paf15, which participates in DNA repair, is overexpressed in numerous solid tumors. Blocking of Paf15 inhibits the growth of many types of cancer cells; while simultaneously enhancing cellular sensitivity to UV radiation. However, its expression and function in rectal cancer (RC) remain unknown. The current study was undertaken to assess the association of Paf15 expression with RC prognosis, as well as to explore the participation of Paf15 in the response of RC cells to irradiation. Increased Paf15 expression was observed in RC tissues and associated with pTNM stage and poor survival. In vitro, Paf15 induced increased RC cell proliferation while accelerating cell cycle progression, inhibiting cell death, and protecting against gamma radiation-induced DNA damage in RC cells. In conclusion, increased Paf15 expression is associated with increased RC proliferation, decreased patient survival, and a worse radiotherapeutic response.
Collapse
Affiliation(s)
- Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.,Department of Medicine (GI Division) and Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Ke Lan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Stephen J Meltzer
- Department of Medicine (GI Division) and Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Liu G, Dong C, Wang X, Hou G, Zheng Y, Xu H, Zhan X, Liu L. Regulatory activity based risk model identifies survival of stage II and III colorectal carcinoma. Oncotarget 2017; 8:98360-98370. [PMID: 29228695 PMCID: PMC5716735 DOI: 10.18632/oncotarget.21312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/26/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical and pathological indicators are inadequate for prognosis of stage II and III colorectal carcinoma (CRC). In this study, we utilized the activity of regulatory factors, univariate Cox regression and random forest for variable selection and developed a multivariate Cox model to predict the overall survival of Stage II/III colorectal carcinoma in GSE39582 datasets (469 samples). Patients in low-risk group showed a significant longer overall survival and recurrence-free survival time than those in high-risk group. This finding was further validated in five other independent datasets (GSE14333, GSE17536, GSE17537, GSE33113, and GSE37892). Besides, associations between clinicopathological information and risk score were analyzed. A nomogram including risk score was plotted to facilitate the utilization of risk score. The risk score model is also demonstrated to be effective on predicting both overall and recurrence-free survival of chemotherapy received patients. After performing Gene Set Enrichment Analysis (GSEA) between high and low risk groups, we found that several cell-cell interaction KEGG pathways were identified. Funnel plot results showed that there was no publication bias in these datasets. In summary, by utilizing the regulatory activity in stage II and III colorectal carcinoma, the risk score successfully predicts the survival of 1021 stage II/III CRC patients in six independent datasets.
Collapse
Affiliation(s)
- Gang Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chuanpeng Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu Zheng
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilin Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaohui Zhan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Li H, Chen YX, Wen JG, Zhou HH. Metastasis-associated in colon cancer 1: A promising biomarker for the metastasis and prognosis of colorectal cancer. Oncol Lett 2017; 14:3899-3908. [PMID: 28943898 PMCID: PMC5605967 DOI: 10.3892/ol.2017.6670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most frequent type of malignancy in the world. Metastasis accounts for >90% mortalities in patients with CRC. The metastasis-associated in colon cancer 1 (MACC1) gene has been identified as a novel biomarker for the prediction of metastasis and disease prognosis, particularly for patients with early-stage disease. Previous clinical studies demonstrated that MACC1 expression and polymorphisms in CRC tissues were indicators of metastasis, and that circulating transcripts in plasma were also significantly associated with the survival of patients. The present review describes the use of MACC1 beyond its utility in the clinic. By elucidating the upstream and downstream signal pathways of MACC1, the well-known mechanisms of MACC1-mediated cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) are summarized, as well as the potential signaling pathways. Furthermore, the underlying mechanisms by which the overexpression of MACC1 causes cisplatin resistance are emphasized.
Collapse
Affiliation(s)
- He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jia-Gen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Ma H, Liu B, Wang S, Liu J. MicroRNA-383 is a tumor suppressor in human lung cancer by targeting endothelial PAS domain-containing protein 1. Cell Biochem Funct 2016; 34:613-619. [PMID: 27862077 DOI: 10.1002/cbf.3237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hongjing Ma
- Department of Respiratory Medicine; The Fifth Central Hospital in Tianjin; Tianjin China
| | - Bin Liu
- Department of Emergency; The Fifth Central Hospital in Tianjin; Tianjin China
| | - Shuoying Wang
- Department of Respiratory Medicine; The Fifth Central Hospital in Tianjin; Tianjin China
| | - Jing Liu
- Department of Respiratory Medicine; The Fifth Central Hospital in Tianjin; Tianjin China
| |
Collapse
|
14
|
Novatt H, Theisen TC, Massie T, Massie T, Simonyan V, Voskanian-Kordi A, Renn LA, Rabin RL. Distinct Patterns of Expression of Transcription Factors in Response to Interferonβ and Interferonλ1. J Interferon Cytokine Res 2016; 36:589-598. [PMID: 27447339 DOI: 10.1089/jir.2016.0031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After viral infection, type I and III interferons (IFNs) are coexpressed by respiratory epithelial cells (RECs) and activate the ISGF3 transcription factor (TF) complex to induce expression of a cell-specific set of interferon-stimulated genes (ISGs). Type I and III IFNs share a canonical signaling pathway, suggesting that they are redundant. Animal and in vitro models, however, have shown that they are not redundant. Because TFs dictate cellular phenotype and function, we hypothesized that focusing on TF-ISG will reveal critical combinatorial and nonredundant functions of type I or III IFN. We treated BEAS-2B human RECs with increasing doses of IFNβ or IFNλ1 and measured expression of TF-ISG. ISGs were expressed in a dose-dependent manner with a nonlinear jump at intermediate doses. At subsaturating combinations of IFNβ and IFNλ1, many ISGs were expressed in a pattern that we modeled with a cubic equation that mathematically defines this threshold effect. Uniquely, IFNβ alone induced early and transient IRF1 transcript and protein expression, while IFNλ1 alone induced IRF1 protein expression at low levels that were sustained through 24 h. In combination, saturating doses of these 2 IFNs together enhanced and sustained IRF1 expression. We conclude that the cubic model quantitates combinatorial effects of IFNβ and IFNλ1 and that IRF1 may mediate nonredundancy of type I or III IFN in RECs.
Collapse
Affiliation(s)
- Hilary Novatt
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Terence C Theisen
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Tammy Massie
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Tristan Massie
- 2 Drugs Evaluation and Research, USFDA, Silver Spring, Maryland
| | - Vahan Simonyan
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Alin Voskanian-Kordi
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Lynnsey A Renn
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Ronald L Rabin
- 1 Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
15
|
Feasibility of Unbiased RNA Profiling of Colorectal Tumors: A Proof of Principle. PLoS One 2016; 11:e0159522. [PMID: 27441409 PMCID: PMC4956030 DOI: 10.1371/journal.pone.0159522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022] Open
Abstract
Despite recent advances in molecular profiling of colorectal cancer (CRC), as of yet this has not translated into an unbiased molecular liquid biopsy profile which can accurately screen for early CRC. In this study we depict the profile of early stage CRC as well as for advanced adenomas (AA) by combination of current molecular knowledge with microarray technology, using efficient circulating free plasma RNA purification from blood and RNA amplification technologies. We joined literature search with Affymetrix gene chip experimental procedure to draw the circulating free plasma RNA profile of colorectal cancer disease reflected in blood. The RNA panel was tested by two datasets comparing patients with CRC with healthy subjects and patients with AA to healthy subjects. For the CRC patient cohort (28 CRC cases vs. 41 healthy controls), the ROC analysis of the selected biomarker panel generated a sensitivity of 75% and a specificity of 93% for the detection of CRC using 8-gene classification model. For the AA patient cohort (28 subjects vs. 46 healthy controls), a sensitivity of 60% and a specificity of 87% were calculated using a 2-gene classification model. We have identified a panel of 8 plasma RNA markers as a preliminary panel for CRC detection and subset markers suitable for AA detection. Subjected to extensive clinical validation we suggest that this panel represents a feasible approach and a potential strategy for noninvasive early diagnosis, as a first-line screening test for asymptomatic, average-risk population before colonoscopy.
Collapse
|
16
|
Butz H, Szabó PM, Nofech-Mozes R, Rotondo F, Kovacs K, Mirham L, Girgis H, Boles D, Patocs A, Yousef GM. Integrative bioinformatics analysis reveals new prognostic biomarkers of clear cell renal cell carcinoma. Clin Chem 2014; 60:1314-26. [PMID: 25139457 DOI: 10.1373/clinchem.2014.225854] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The outcome of clear cell renal cell carcinoma (ccRCC) is still unpredictable. Even with new targeted therapies, the average progression-free survival is dismal. Markers for early detection and progression could improve disease outcome. METHODS To identify efficient and hitherto unrecognized pathogenic factors of the disease, we performed a uniquely comprehensive pathway analysis and built a gene interaction network based on large publicly available data sets assembled from 28 publications, comprising a 3-prong approach with high-throughput mRNA, microRNA, and protein expression profiles of 593 ccRCC and 389 normal kidney samples. We validated our results on 2 different data sets of 882 ccRCC and 152 normal tissues. Functional analyses were done by proliferation, migration, and invasion assays following siRNA (small interfering RNA) knockdown. RESULTS After integration of multilevel data, we identified aryl-hydrocarbon receptor (AHR), grainyhead-like-2 (GRHL2), and KIAA0101 as new pathogenic factors. GRHL2 expression was associated with higher chances for disease relapse and retained prognostic utility after controlling for grade and stage [hazard ratio (HR), 3.47, P = 0.012]. Patients with KIAA0101-positive expression suffered worse disease-free survival (HR, 3.64, P < 0.001), and in multivariate analysis KIAA0101 retained its independent prognostic significance. Survival analysis showed that GRHL2- and KIAA0101-positive patients had significantly lower disease-free survival (P = 0.002 and P < 0.001). We also found that KIAA0101 silencing decreased kidney cancer cell migration and invasion in vitro. CONCLUSIONS Using an integrative system biology approach, we identified 3 novel factors as potential biomarkers (AHR, GRHL2 and KIAA0101) involved in ccRCC pathogenesis and not linked to kidney cancer before.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Peter M Szabó
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Roy Nofech-Mozes
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Fabio Rotondo
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Kalman Kovacs
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Lorna Mirham
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Hala Girgis
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Dina Boles
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Attila Patocs
- HAS-SE "Lendulet" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - George M Yousef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;
| |
Collapse
|
17
|
Rawłuszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M, Jagodziński PP. Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res 2014; 12:1112-27. [PMID: 24825851 DOI: 10.1158/1541-7786.mcr-14-0054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Hypoxic conditions during the formation of colorectal cancer may support the development of more aggressive tumors. Hypoxia-inducible factor (HIF) is a heterodimeric complex, composed of oxygen-induced HIFα and constitutively expressed HIFβ subunits, which mediates the primary transcriptional response to hypoxic stress. Among HIFα isoforms, HIF1α (HIF1A) and endothelial PAS domain-containing protein 1 (EPAS1) are able to robustly activate hypoxia-responsive gene signatures. Although posttranslational regulation of HIFα subunits is well described, less is known about their transcriptional regulation. Here, molecular analysis determined that EPAS1 mRNA was significantly reduced in primary colonic adenocarcinoma specimens compared with histopathologically nonneoplastic tissue from 120 patients. In contrast, no difference in HIF1A mRNA levels was observed between cancerous and noncancerous tissue. Bisulfite DNA sequencing and high-resolution melting analysis identified significant DNA hypermethylation in the EPAS1 regulatory region from cancerous tissue compared with nonneoplastic tissue. Importantly, multivariate Cox regression analysis revealed a high HR for patients with cancer with low EPAS1 transcript levels (HR, 4.91; 95% confidence interval, CI, 0.42-56.15; P = 0.047) and hypermethylated EPAS1 DNA (HR, 33.94; 95% CI, 2.84-405.95; P = 0.0054). Treatment with a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine (5-aza-dC/Decitabine), upregulated EPAS1 expression in hypoxic colorectal cancer cells that were associated with DNA demethylation of the EPAS1 regulatory region. In summary, EPAS1 is transcriptionally regulated by DNA methylation in colorectal cancer. IMPLICATIONS DNA methylation and mRNA status of EPAS1 have novel prognostic potential for colorectal cancer.
Collapse
Affiliation(s)
| | - Karolina Horbacka
- General and Colorectal Surgery, Poznań University of Medical Sciences, Poland
| | - Piotr Krokowicz
- General and Colorectal Surgery, Poznań University of Medical Sciences, Poland
| | | | | |
Collapse
|
18
|
Chen Z, He X, Xia W, Huang Q, Zhang Z, Ye J, Ni C, Wu P, Wu D, Xu J, Qiu F, Huang J. Prognostic value and clinicopathological differences of HIFs in colorectal cancer: evidence from meta-analysis. PLoS One 2013; 8:e80337. [PMID: 24324596 PMCID: PMC3855620 DOI: 10.1371/journal.pone.0080337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/02/2013] [Indexed: 01/11/2023] Open
Abstract
Background The prognostic value of HIFs in colorectal cancer was evaluated in a large number of studies, but the conclusions were inconclusive. Meanwhile, clinicopathologic differences of HIF-1α and HIF-2α were rarely compared in recent studies. Methodology Identical search strategies were used to search relevant literatures in the PubMed and Web of Science databases. The prognostic significances and clinicopathological differences of HIFs in CRC were analyzed. Principal Findings A total of 23studies comprising 2984 CRC patients met the inclusion criteria. The results indicated that overexpressed HIFs were significantly associated with increase of mortality risk, including overall survival (OS) (HR 2.06 95%CI 1.55–2.74) and disease free survival (HR 2.84, 95%CI 1.87–4.31). Subgroup analysis revealed that both overexpressed HIF-1α and HIF-2α had correlations with worse prognosis. The pooled HRs were 2.01 (95% CI: 1.55–2.6) and 2.07(95% CI: 1.01–4.26). Further subgroup analysis on HIF-1α was performed by study location, number of patients, quality score and cut-off value. The results showed that HIF-1α overexpression was significantly associated with poor OS, particularly in Asian countries (HR 2.3, 95% CI: 1.74–3.01), while not in European or other countries. In addition, overexpression of HIF-1α was closely related with these clinicopathological features, including Dukes' stages (OR 0.39, 95% CI: 0.17–0.89), UICC stages (OR 0.42 95% CI: 0.3–0.59), depth of invasion (OR 0.71, 95% CI: 0.51–0.99), lymphnode status (OR 0.49, 95% CI: 0.32–0.73) and metastasis (OR 0.29, 95% CI: 0.11–0.81). While overexpression of HIF-2α was only associated with grade of differentiation (OR 0.48, 95% CI: 0.29–0.81). Conclusions This study showed that both HIF-1α and HIF-2α overexpression were associated with an unfavorable prognosis. HIF-1α overexpression seemed to be associated with worse prognosis in Asian countries. Additionally, HIF-1α and HIF-2α indicated distinct clinicopathologic features.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Xin He
- Department of Hematology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Xia
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ni
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Pin Wu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Dang Wu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
19
|
Mao Y, Fu A, Leaderer D, Zheng T, Chen K, Zhu Y. Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses. BMC Cancer 2013; 13:498. [PMID: 24161199 PMCID: PMC3924353 DOI: 10.1186/1471-2407-13-498] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/04/2013] [Indexed: 02/08/2023] Open
Abstract
Background The circadian clock and cell cycle are two global regulatory systems that have pervasive behavioral and physiological effects on eukaryotic cells, and both play a role in cancer development. Recent studies have indicated that the circadian and cell cycle regulator, TIMELESS, may serve as a molecular bridge between these two regulatory systems. Methods To assess the role of TIMELESS in tumorigenesis, we analyzed TIMELESS expression data from publically accessible online databases. A loss-of-function analysis was then performed using TIMELESS-targeting siRNA oligos followed by a whole-genome expression microarray and network analysis. We further tested the effect of TIMELESS down-regulation on cell proliferation rates of a breast and cervical cancer cell line, as suggested by the results of our network analysis. Results TIMELESS was found to be frequently overexpressed in different tumor types compared to normal controls. Elevated expression of TIMELESS was significantly associated with more advanced tumor stage and poorer breast cancer prognosis. We identified a cancer-relevant network of transcripts with altered expression following TIMELESS knockdown which contained many genes with known functions in cancer development and progression. Furthermore, we observed that TIMELESS knockdown significantly decreased cell proliferation rate. Conclusions Our results suggest a potential role for TIMELESS in tumorigenesis, which warrants further investigation of TIMELESS expression as a potential biomarker of cancer susceptibility and prognostic outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA.
| |
Collapse
|