1
|
Tran KB, Kolekar S, Wang Q, Shih JH, Buchanan CM, Deva S, Shepherd PR. Response to BRAF-targeted Therapy Is Enhanced by Cotargeting VEGFRs or WNT/β-Catenin Signaling in BRAF-mutant Colorectal Cancer Models. Mol Cancer Ther 2022; 21:1777-1787. [PMID: 36198029 PMCID: PMC9716247 DOI: 10.1158/1535-7163.mct-21-0941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
The fact that 10% of colorectal cancer tumors harbor BRAF V600E mutations suggested targeting BRAF as a potential therapy. However, BRAF inhibitors have only limited single-agent efficacy in this context. The potential for combination therapy has been shown by the BEACON trial where targeting the EGF receptor with cetuximab greatly increased efficacy of BRAF inhibitors in BRAF-mutant colorectal cancer. Therefore, we explored whether efficacy of the mutant BRAF inhibitor vemurafenib could be enhanced by cotargeting of either oncogenic WNT/β-catenin signaling or VEGFR signaling. We find the WNT/β-catenin inhibitors pyrvinium, ICG-001 and PKF118-310 attenuate growth of colorectal cancer cell lines in vitro with BRAF-mutant lines being relatively more sensitive. Pyrvinium combined with vemurafenib additively or synergistically attenuated growth of colorectal cancer cell lines in vitro. The selective and potent VEGFR inhibitor axitinib was most effective against BRAF-mutant colorectal cancer cell lines in vitro, but the addition of vemurafenib did not significantly increase these effects. When tested in vivo in animal tumor models, both pyrvinium and axitinib were able to significantly increase the ability of vemurafenib to attenuate tumor growth in xenografts of BRAF-mutant colorectal cancer cells. The magnitude of these effects was comparable with that induced by a combination of vemurafenib and cetuximab. This was associated with additive effects on release from tumor cells and tumor microenvironment cell types of substances that would normally aid tumor progression. Taken together, these preclinical data indicate that the efficacy of BRAF inhibitor therapy in colorectal cancer could be increased by cotargeting either WNT/β-catenin or VEGFRs with small-molecule inhibitors.
Collapse
Affiliation(s)
- Khanh B. Tran
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Sharada Kolekar
- Auckland Cancer Society Research Center, University of Auckland, New Zealand
| | - Qian Wang
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand
| | - Jen-Hsing Shih
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand
| | - Christina M. Buchanan
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Sanjeev Deva
- Cancer Clinical Trials Unit, Auckland District Health Board, Auckland, New Zealand
| | - Peter R. Shepherd
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand.,Auckland Cancer Society Research Center, University of Auckland, New Zealand.,Corresponding Author: Peter R. Shepherd, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand. Phone: 649-373-7999; E-mail:
| |
Collapse
|
2
|
3D microengineered vascularized tumor spheroids for drug delivery and efficacy testing. Acta Biomater 2022:S1742-7061(22)00665-1. [DOI: 10.1016/j.actbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022]
|
3
|
Sen’kova AV, Savin IA, Kabilova TO, Zenkova MA, Chernolovskaya EL. Tumor-Suppressing, Immunostimulating, and Hepatotoxic Effects of Immunostimulatory RNA in Combination with Dacarbazine in a Murine Melanoma Model. Mol Biol 2020. [DOI: 10.1134/s0026893320020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Xu J, He M, Hou X, Wang Y, Shou C, Cai X, Yuan Z, Yin Y, Lan M, Lou K, Zhao Y, Yang Y, Chen X, Gao F. Safe and Efficacious Diphtheria Toxin-Based Treatment for Melanoma: Combination of a Light-On Gene-Expression System and Nanotechnology. Mol Pharm 2019; 17:301-315. [PMID: 31765570 DOI: 10.1021/acs.molpharmaceut.9b01038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The controversy surrounding the use of diphtheria toxin (DT) as a therapeutic agent against tumor cells arises mainly from its unexpected harmfulness to healthy tissues. We encoded the cytotoxic fragment A of DT (DTA) as an objective gene in the Light-On gene-expression system to construct plasmids pGAVPO (pG) and pU5-DTA (pDTA). Meanwhile, a cRGD-modified ternary complex comprising plasmids, chitosan, and liposome (pG&pDTA@cRGD-CL) was prepared as a nanocarrier to ensure transfection efficiency. Benefiting from spatiotemporal control of this light-switchable transgene system and the superior tumor targeting of the carrier, toxins were designed to be expressed selectively in illuminated lesions. In vitro studies suggested that pG&pDTA@cRGD-CL exerted arrest of the S phase in B16F10 cells upon blue light irradiation and, ultimately, induced the apoptosis and necrosis of tumor cells. Such DTA-based treatment exerted enhanced antitumor activity in mice bearing B16F10 xenografts and displayed prolonged survival time with minimal side effects. Hence, we described novel DTA-based therapy combined with nanotechnology and the Light-On gene-expression system: such treatment could be a promising strategy against melanoma.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Muye He
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyu Hou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaoran Cai
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Zeting Yuan
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai 200062 , China
| | - Yu Yin
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| | - Kaiyan Lou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design and Shanghai Key Laboratory of Chemical Biology , East China University of Science and Technology , Shanghai 200237 , China
| | - Yuzheng Zhao
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Yi Yang
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Xianjun Chen
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
5
|
Abstract
The incidence of malignant melanoma is increasing rapidly on a global scale. Although some types of melanoma, for example primary cutaneous melanoma, can be managed by surgery, metastatic melanoma cannot and it has a high mortality rate. Both oncogene and immune-targeted strategies have shown marked efficacy in some patients, but their effect on overall survival is still variable. Therefore, newer therapeutic approaches are needed. Fortunately, new advances in molecular medicine have led to an understanding of an individual patient's cancer at the genomic level. This information is now being used in all stages of cancer treatment including diagnosis, treatment selection, and treatment monitoring. This new strategy of personalized medicine may lead to marked shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. This review provides an overview of recent approaches in cancer research and expected impact on the future of treatment for metastatic melanoma.
Collapse
|
6
|
Ehrhardt M, Craveiro RB, Velz J, Olschewski M, Casati A, Schönberger S, Pietsch T, Dilloo D. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma. J Cell Mol Med 2018; 22:2153-2161. [PMID: 29377550 PMCID: PMC5867109 DOI: 10.1111/jcmm.13489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi‐kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti‐neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c‐myc‐amplified Non‐WNT/Non‐SHH and SHH‐TP53‐mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c‐kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi‐modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC‐0941 enhances the anti‐neoplastic efficacy of Axitinib against c‐myc‐amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes.
Collapse
Affiliation(s)
- Michael Ehrhardt
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Rogerio B Craveiro
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Julia Velz
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Martin Olschewski
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Anna Casati
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Dagmar Dilloo
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
7
|
Adoptive cell therapy with CD4 + T helper 1 cells and CD8 + cytotoxic T cells enhances complete rejection of an established tumour, leading to generation of endogenous memory responses to non-targeted tumour epitopes. Clin Transl Immunology 2017; 6:e160. [PMID: 29114389 PMCID: PMC5671987 DOI: 10.1038/cti.2017.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 01/31/2023] Open
Abstract
The results of adoptive T-cell therapies (ACTs) are very encouraging and show clinical evidence that ACT can provide a cure for patients with metastatic disease. However, various response rates and long-term cancer remission have been observed in different ACT trials. The types of T cells, prior treatment with chemotherapy and co-administration of other immune-target therapies have been found to influence the efficacy of ACT. In this study, we investigate the ability of ACT using CD4+ T helper 1 (Th1) cells and CD8+ cytotoxic T lymphocytes (CTLs) to reject the growth of established B16-ovalbumin (OVA) melanoma. CD8+ CTLs were found to be the main effector T cells that mediated tumour regression. However, low tumour-free survival rates were observed in ACT with CD8+ CTLs only. Co-transferring CD4+ Th1 cells and CD8+ CTLs has been observed to induce a synergistic antitumour response, resulting in complete regression in 80% of the tumour-bearing mice. We also examined a prior Dacarbazine (DTIC) and after virus-like particle (VLP)-OVA vaccine treatment to enhance ACT, but no therapeutic benefit was observed during primary B16-OVA tumour growth. Nevertheless, the ACT-mediated antitumour response was able to generate memory responses to both B16-OVA and B16-gp33 tumours. VLP-OVA vaccination following ACT enhances the memory responses to tumours that express a heterogenic population of both B16-OVA and B16-gp33 cells; however, it abolished the memory response to tumours consisting of only gp33-expressing cells. These findings provide important information for designing therapeutic treatments for patients with metastatic disease and cancer relapse to achieve durable cancer remission.
Collapse
|
8
|
Szade K, Zukowska M, Szade A, Collet G, Kloska D, Kieda C, Jozkowicz A, Dulak J. Spheroid-plug model as a tool to study tumor development, angiogenesis, and heterogeneity in vivo. Tumour Biol 2016; 37:2481-96. [PMID: 26385771 PMCID: PMC4842223 DOI: 10.1007/s13277-015-4065-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Subcutaneous injection of the tumor cell suspension is a simple and commonly used tool for studying tumor development in vivo. However, subcutaneous models poorly resemble tumor complexity due to the fast growth not reflecting the natural course. Here, we describe an application of the new spheroid-plug model to combine the simplicity of subcutaneous injection with improved resemblance to natural tumor progression. Spheroid-plug model relies on in vitro formation of tumor spheroids, followed by injection of single tumor spheroid subcutaneously in Matrigel matrix. In spheroid-plug model, tumors grow slower in comparison to tumors formed by injection of cell suspension as assessed by 3D ultrasonography (USG) and in vivo bioluminescence measurements. The slower tumor growth rate in spheroid-plug model is accompanied by reduced necrosis. The spheroid-plug model ensures increased and more stable vascularization of tumor than classical subcutaneous tumor model as demonstrated by 3D USG Power Doppler examination. Flow cytometry analysis showed that tumors formed from spheroids have enhanced infiltration of endothelial cells as well as hematopoietic and progenitor cells with stem cell phenotype (c-Kit(+) and Sca-1(+)). They also contain more tumor cells expressing cancer stem cell marker CXCR4. Here, we show that spheroid-plug model allows investigating efficiency of anticancer drugs. Treatment of spheroid-plug tumors with known antiangiogenic agent axitinib decreased their size and viability. The antiangiogenic activity of axitinib was higher in spheroid-plug model than in classical model. Our results indicate that spheroid-plug model imitates natural tumor growth and can become a valuable tool for cancer research.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Axitinib
- Biomarkers, Tumor/metabolism
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Collagen/metabolism
- Drug Combinations
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Imidazoles/pharmacology
- Indazoles/pharmacology
- Injections, Subcutaneous/methods
- Laminin/metabolism
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proteoglycans/metabolism
- Receptors, CXCR4/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, Orleans, France
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, Orleans, France
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Laboratory of Bioresponsive Materials, University of California, San Diego, CA, USA
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, Orleans, France
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
- Malopolska Centre of Biotechnology, Krakow, Poland.
| |
Collapse
|
9
|
Kurenova E, Ucar D, Liao J, Yemma M, Gogate P, Bshara W, Sunar U, Seshadri M, Hochwald SN, Cance WG. A FAK scaffold inhibitor disrupts FAK and VEGFR-3 signaling and blocks melanoma growth by targeting both tumor and endothelial cells. Cell Cycle 2015; 13:2542-53. [PMID: 25486195 DOI: 10.4161/15384101.2015.941760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Melanoma has the highest mortality rate of all skin cancers and a major cause of treatment failure is drug resistance. Tumors heterogeneity requires novel therapeutic strategies and new drugs targeting multiple pathways. One of the new approaches is targeting the scaffolding function of tumor related proteins such as focal adhesion kinase (FAK). FAK is overexpressed in most solid tumors and is involved in multiple protein-protein interactions critical for tumor cell survival, tumor neovascularization, progression and metastasis. In this study, we investigated the anticancer activity of the FAK scaffold inhibitor C4, targeted to the FAK-VEGFR-3 complex, against melanomas. We compared C4 inhibitory effects in BRAF mutant vs BRAF wild type melanomas. C4 effectively caused melanoma tumor regression in vivo, when administered alone and sensitized tumors to chemotherapy. The most dramatic effect of C4 was related to reduction of vasculature of both BRAF wild type and V600E mutant xenograft tumors. The in vivo effects of C4 were assessed in xenograft models using non-invasive multimodality imaging in conjunction with histologic and molecular biology methods. C4 inhibited cell viability, adhesion and motility of melanoma and endothelial cells, specifically blocked phosphorylation of VEGFR-3 and FAK and disrupted their complexes. Specificity of in vivo effects for C4 were confirmed by a decrease in tumor FAK and VEGFR-3 phosphorylation, reduction of vasculogenesis and reduced blood flow. Our collective observations provide evidence that a small molecule inhibitor targeted to the FAK protein-protein interaction site successfully inhibits melanoma growth through dual targeting of tumor and endothelial cells and is effective against both BRAF wild type and mutant melanomas.
Collapse
Affiliation(s)
- Elena Kurenova
- a Department of Surgical Oncology ; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Neagu M, Constantin C, Martin D, Albulescu L, Iacob N, Ighigeanu D. Whole body microwave irradiation for improved dacarbazine therapeutical action in cutaneous melanoma mouse model. Radiol Res Pract 2013; 2013:414816. [PMID: 24377047 PMCID: PMC3860147 DOI: 10.1155/2013/414816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022] Open
Abstract
A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1 β , IL-6, IL-10, IL-12 (p70), IFN- γ , GM-CSF, TNF- α , MIP-1 α , MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, sector 5, Bucharest 050096, Romania
| | - Carolina Constantin
- Immunology Department, Immunobiology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independentei, sector 5, Bucharest 050096, Romania
| | - Diana Martin
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele 077125, Romania
| | - Lucian Albulescu
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Nicusor Iacob
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele 077125, Romania
| | - Daniel Ighigeanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele 077125, Romania
| |
Collapse
|