1
|
Roumeliotou A, Strati A, Chamchougia F, Xagara A, Tserpeli V, Smilkou S, Lagopodi E, Christopoulou A, Kontopodis E, Drositis I, Androulakis N, Georgoulias V, Koinis F, Kotsakis A, Lianidou E, Kallergi G. Comprehensive Analysis of CXCR4, JUNB, and PD-L1 Expression in Circulating Tumor Cells (CTCs) from Prostate Cancer Patients. Cells 2024; 13:782. [PMID: 38727318 PMCID: PMC11083423 DOI: 10.3390/cells13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.
Collapse
Affiliation(s)
- Argyro Roumeliotou
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Foteini Chamchougia
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Anastasia Xagara
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Stavroula Smilkou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Elina Lagopodi
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | | | - Emmanouil Kontopodis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Ioannis Drositis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Nikolaos Androulakis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Vassilis Georgoulias
- Hellenic Oncology Research Group, 11526 Athens, Greece;
- First Department of Medical Oncology, Metropolitan General Hospital, 15562 Athens, Greece
| | - Filippos Koinis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| |
Collapse
|
2
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
3
|
Subramaniam B, Arshad NM, Malagobadan S, Misran M, Nyamathulla S, Mun KS, Nagoor NH. Development and Evaluation of 1'-Acetoxychavicol Acetate (ACA)-Loaded Nanostructured Lipid Carriers for Prostate Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13040439. [PMID: 33804975 PMCID: PMC8063947 DOI: 10.3390/pharmaceutics13040439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022] Open
Abstract
1'-acetoxychavicol acetate (ACA) extracted from the rhizomes of Alpinia conchigera Griff (Zingiberaceae) has been shown to deregulate the NF-ĸB signaling pathway and induce apoptosis-mediated cell death in many cancer types. However, ACA is a hydrophobic ester, with poor solubility in an aqueous medium, limited bioavailability, and nonspecific targeting in vivo. To address these problems, ACA was encapsulated in a nanostructured lipid carrier (NLC) anchored with plerixafor octahydrochloride (AMD3100) to promote targeted delivery towards C-X-C chemokine receptor type 4 (CXCR4)-expressing prostate cancer cells. The NLC was prepared using the melt and high sheer homogenization method, and it exhibited ideal physico-chemical properties, successful encapsulation and modification, and sustained rate of drug release. Furthermore, it demonstrated time-based and improved cellular uptake, and improved cytotoxic and anti-metastatic properties on PC-3 cells in vitro. Additionally, the in vivo animal tumor model revealed significant anti-tumor efficacy and reduction in pro-tumorigenic markers in comparison to the placebo, without affecting the weight and physiological states of the nude mice. Overall, ACA-loaded NLC with AMD3100 surface modification was successfully prepared with evidence of substantial anti-cancer efficacy. These results suggest the potential use of AMD3100-modified NLCs as a targeting carrier for cytotoxic drugs towards CXCR4-expressing cancer cells.
Collapse
Affiliation(s)
- Bavani Subramaniam
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norhafiza M. Arshad
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia; (N.M.A.); (S.M.)
| | - Sharan Malagobadan
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia; (N.M.A.); (S.M.)
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50606, Malaysia;
| | - Shaik Nyamathulla
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kein Seong Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Noor Hasima Nagoor
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia; (N.M.A.); (S.M.)
- Correspondence: ; Tel.: +603-79675921
| |
Collapse
|
4
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Jecs E, Miller EJ, Wilson RJ, Nguyen HH, Tahirovic YA, Katzman BM, Truax VM, Kim MB, Kuo KM, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Synthesis of Novel Tetrahydroisoquinoline CXCR4 Antagonists with Rigidified Side-Chains. ACS Med Chem Lett 2018; 9:89-93. [PMID: 29456793 DOI: 10.1021/acsmedchemlett.7b00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
A structure-activity relationship study of potent TIQ15-derived CXCR4 antagonists is reported. In this investigation, the TIQ15 side-chain was constrained to improve its drug properties. The cyclohexylamino congener 15a was found to be a potent CXCR4 inhibitor (IC50 = 33 nM in CXCL12-mediated Ca2+ flux) with enhanced stability in liver microsomes and reduced inhibition of CYP450 (2D6). The improved CXCR4 antagonist 15a has potential therapeutic application as a single agent or combinatory anticancer therapy.
Collapse
Affiliation(s)
- Edgars Jecs
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Huy H. Nguyen
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yesim A. Tahirovic
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Brook M. Katzman
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Chi S. Sum
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Mary E. Cvijic
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Gretchen M. Schroeder
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Lawrence J. Wilson
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Schwarzenböck SM, Stenzel J, Otto T, Helldorff HV, Bergner C, Kurth J, Polei S, Lindner T, Rauer R, Hohn A, Hakenberg OW, Wester HJ, Vollmar B, Krause BJ. [ 68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with [ 18F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget 2017; 8:95606-95619. [PMID: 29221153 PMCID: PMC5707047 DOI: 10.18632/oncotarget.21024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim was to characterize the properties of [68Ga]Pentixafor as tracer for prostate cancer imaging in a PC-3 prostate cancer xenograft mouse model and to investigate its correlation with [18F]FDG PET/CT, magnetic resonance imaging (MRI) and ex vivo analyses. Methods Static [68Ga]Pentixafor and [18F]FDG PET as well as morphological/ diffusion weighted MRI and 1H MR spectroscopy was performed. Imaging data were correlated with ex vivo biodistribution and CXCR4 expression in PC-3 tumors (immunohistochemistry (IHC), mRNA analysis). Flow cytometry was performed for evaluation of localization of CXCR4 receptors (in vitro PC-3 cell experiments). Results Tumor uptake of [68Ga]Pentixafor was significantly lower compared to [18F]FDG. Ex vivo CXCR4 mRNA expression of tumors was shown by PCR. Only faint tumor CXCR4 expression was shown by IHC (immuno reactive score of 3). Accordingly, flow cytometry of PC-3 cells revealed only a faint signal, cell membrane permeabilisation showed a slight signal increase. There was no significant correlation of [68Ga]Pentixafor tumor uptake and ex vivo receptor expression. Spectroscopy showed typical spectra of prostate cancer. Conclusion PC-3 tumor uptake of [68Ga]Pentixafor was existent but lower compared to [18F]FDG. No significant correlation of ex vivo tumor CXCR4 receptor expression and [68Ga]Pentixafor tumor uptake was shown. CXCR4 receptor expression on the surface of PC-3 cells was existent but rather low possibly explaining the limited [68Ga]Pentixafor tumor uptake; receptor localization in the interior of PC-3 cells is presumable as shown by cell membrane permeabilisation. Further studies are necessary to define the role of [68Ga]Pentixafor in prostate cancer imaging.
Collapse
Affiliation(s)
- Sarah M Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Thomas Otto
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Heike V Helldorff
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Stefan Polei
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Romina Rauer
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Alexander Hohn
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Oliver W Hakenberg
- Department of Urology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Hans J Wester
- Institute for Radiopharmaceutical Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| |
Collapse
|
7
|
Huang Y, Ye Y, Long P, Zhao S, Zhang L, A Y. Silencing of CXCR4 and CXCR7 expression by RNA interference suppresses human endometrial carcinoma growth in vivo. Am J Transl Res 2017; 9:1896-1904. [PMID: 28469794 PMCID: PMC5411937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
In this paper, the effect of silencing the expression of CXCR4 and CXCR7 by RNAi on the growth of endometrial carcinoma (EC), in vivo, was evaluated. To establish endometrial carcinoma model, thirty nude mice were subcutaneously inoculated with 1 × 107 Ishikawa cells. All tumor-bearing mice were randomly assigned to five groups (six mice in each group) when the tumor xenografts reached 5-7 mm in diameter, and treated with CXCR4-siRNA (5 nmol), CXCR7-siRNA (5 nmol), CXCR4-siRNA (5 nmol) plus CXCR7-siRNA (5 nmol), negative-siRNA (5 nmol) and normal saline, respectively. Following intra-tumor injection, the growth rate of tumor xenografts in the three treatment groups was significantly delayed compared with those in Ne-si and NS group (P<0.05). The results of QRT-PCR and immunohistochemical assessment showed that the expression levels of CXCR4 and CXCR7 could be down regulated by RNA interference. We also observed that treatment with CXCR4-siRNA and CXCR7-siRNA reduced cell proliferation, but there was no significant difference in apoptosis among the five groups. CXCR4 and CXCR7 silencing by RNAi inhibit the growth of human endometrial carcinoma xenografts by inhibiting cancer cell proliferation, in vivo. These results indicate that CXCR4 and CXCR7 could serve as potential alternative targets for gene therapy in endometrial carcinoma.
Collapse
Affiliation(s)
- Yu Huang
- The Affiliated Women & Children Hospital of Qingdao UniversityQingdao, Shandong Province, China
- Qingdao Women & Children HospitalQingdao, Shandong Province, China
| | - Yuanying Ye
- The Affiliated Women & Children Hospital of Qingdao UniversityQingdao, Shandong Province, China
- Qingdao Women & Children HospitalQingdao, Shandong Province, China
| | - Ping Long
- The Affiliated Women & Children Hospital of Qingdao UniversityQingdao, Shandong Province, China
- Qingdao Women & Children HospitalQingdao, Shandong Province, China
| | - Shuping Zhao
- The Affiliated Women & Children Hospital of Qingdao UniversityQingdao, Shandong Province, China
- Qingdao Women & Children HospitalQingdao, Shandong Province, China
| | - Lei Zhang
- The Affiliated Women & Children Hospital of Qingdao UniversityQingdao, Shandong Province, China
- Qingdao Women & Children HospitalQingdao, Shandong Province, China
| | - Yanni A
- The Affiliated Women & Children Hospital of Qingdao UniversityQingdao, Shandong Province, China
- Qingdao Women & Children HospitalQingdao, Shandong Province, China
| |
Collapse
|
8
|
Yang Q, Wu H, Wang H, Li Y, Zhang L, Zhu L, Wang W, Zhou J, Fu Y, Chen S, Wu Q, Chen C, Zhou C. N-terminal polypeptide derived from vMIP-II exerts its antitumor activity by inhibiting the CXCR4 pathway in human glioma. Int J Oncol 2017; 50:1160-1174. [PMID: 28350074 PMCID: PMC5363877 DOI: 10.3892/ijo.2017.3906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence demonstrates that the stromal derived factor-1 (SDF-1α)/CXCR4 axis is associated with tumor aggressiveness and metastasis, including glioma, the most common brain cancer. In the present study, we demonstrated that a novel designed peptide NT21MP of viral macrophage inflammatory protein II, targeting CXCR4 inhibits SDF-1α-induced activation in glioma. The effects of NT21MP on CXCR4 expression, cell survival and migration were assessed on the human glioma cell line U251 and SHG-44 exposed to SDF-1α, by western blotting, MTT assay, flow cytometry and transwell migration assay. Our results illustrated that NT21MP inhibited SDF-1α induced proliferation, migration and invasion by upregulated pro-apoptotic genes (Bak1 and caspase-3) and downregulated Bcl-2/Bax as well as cell cycle regulators (cyclin D1 and CDK4) to arrest cell cycle in G0/G1 phase and promote apoptosis. By RT-qPCR and immunofluorescence we found that CXCR4 was highly expressed in SHG-44 cells. Our results from wound healing and transwell invasion assays indicated silencing of CXCR4 significantly inhibited the SDF-1α‑induced migration and invasion; similarly, flow cytometry showed that treatment with si-CXCR4 affected cell cycle and induced cell apoptosis in SHG-44. However, these effects were significantly weakened by NT21MP. In conclusion, the present study indicates that NT21MP plays a regulatory role in the SDF-1α/CXCR4 axis and further manages the invasion, migration, apoptosis and cell cycle of glioma cells. Thus, NT21MP might represent a novel therapeutic approach against glioma.
Collapse
Affiliation(s)
- Qingling Yang
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Haihua Wu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Haifeng Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yu Li
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lingyu Zhang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Lihua Zhu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jihong Zhou
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yingxiao Fu
- Department of Bioscience, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Sulian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
9
|
Xu Z, Li P, Wei D, Wang Z, Bao Y, Sun J, Qu L, Wang L. NMMHC-IIA-dependent nuclear location of CXCR4 promotes migration and invasion in renal cell carcinoma. Oncol Rep 2016; 36:2681-2688. [PMID: 27634189 DOI: 10.3892/or.2016.5082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor cysteine (C)-X-C receptor (CXCR4) is a G-protein-coupled receptor that exerts a vital role in distant metastasis of renal cell carcinoma (RCC). Emerging evidence demonstrates that CXCR4 as the cytomembrane receptor translocated into the nucleus to facilitate cell migration and, therefore, determine the prognosis of several types of malignancies. However, the biological mechanism of nuclear location of CXCR4 remains unclear. In the present study, we confirmed the significant implications of the putative nuclear localization sequence (NLS) '146RPRK149̓ on CXCR4 subcellular localization and metastatic potential by point-mutation assay in RCC cell lines. Importantly, mass spectrum followed by immunoprecipitation identified non-muscle myosin heavy chain-IIA (NMMHC-IIA) as the CXCR4-interacting protein. Furthermore, pharmaceutical inhibition of NMMHC-IIA by blebbistatin dampened the nuclear translocation of CXCR4 as well as the metastatic capacity of RCC cells. In conclusion, the present study may drive the comprehensive progress toward elucidating the mechanism responsible for CXCR4 nuclear function and metastasis in tumors.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Peng Li
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Dan Wei
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhixiang Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Jipeng Sun
- Health Contingent, No. 71210 Unit of People's Liberation Army, Yantai, Shantong 264001, P.R. China
| | - Le Qu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| |
Collapse
|
10
|
Choi WT, Yang Y, Xu Y, An J. Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and metastasis. Curr Top Med Chem 2016; 14:1574-89. [PMID: 25159167 DOI: 10.2174/1568026614666140827143541] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 is required for the entry of human immunodeficiency virus type 1 (HIV-1) into target cells and for the development and dissemination of various types of cancers, including gastrointestinal, cutaneous, head and neck, pulmonary, gynecological, genitourinary, neurological, and hematological malignancies. The T-cell (T)-tropic HIV-1 strains use CXCR4 as the entry coreceptor; consequently, multiple CXCR4 antagonistic inhibitors have been developed for the treatment of acquired immune deficiency syndrome (AIDS). However, other potential applications of CXCR4 antagonists have become apparent since its discovery in 1996. In fact, increasing evidence demonstrates that epithelial and hematopoietic tumor cells exploit the interaction between CXCR4 and its natural ligand, stromal cellderived factor (SDF)-1α, which normally regulates leukocyte migration. The CXCR4 and/or SDF-1α expression patterns in tumor cells also determine the sites of metastatic spread. In addition, the activation of CXCR4 by SDF-1α promotes invasion and proliferation of tumor cells, enhances tumor-associated neoangiogenesis, and assists in the degradation of the extracellular matrix and basement membrane. As such, the evaluation of CXCR4 and/or SDF-1α expression levels has a significant prognostic value in various types of malignancies. Several therapeutic challenges remain to be overcome before the use of CXCR4 inhibitors can be translated into clinical practice, but promising preclinical data demonstrate that CXCR4 antagonists can mobilize tumor cells from their protective microenvironments, interfere with their metastatic and tumorigenic potentials, and/or make tumor cells more susceptible to chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
11
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
12
|
Chen Q, Zhong T. The association of CXCR4 expression with clinicopathological significance and potential drug target in prostate cancer: a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5115-22. [PMID: 26379424 PMCID: PMC4567179 DOI: 10.2147/dddt.s82475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CXCR4/CXCL12 axis plays an important role in tumor growth, angiogenesis, metastasis, and therapeutic resistance. The aim of this study is to perform a meta-analysis and literature review to evaluate the association of CXCR4 expression with clinicopathological significance and prognosis in patients with prostate cancer (PCa). A detailed literature search was made in Medline, EMBASE, Web of Science, and Google Scholar for related research publications. The data were extracted and assessed independently. Analysis of pooled data was performed using Review Manager 5.2. Odds ratio (OR) with corresponding confidence intervals were calculated and summarized. The meta-analysis included a total of eleven studies and 630 patients. The rate of CXCR4 protein expression in PCa was significantly higher than in nonmalignant prostate tissues (OR =35.71, P<0.00001). The expression of CXCR4 protein was not significantly associated with Gleason score (P=0.73). However, the frequency of CXCR4 protein expression was significantly higher in T3–4 stage than in T1–2 stage of PCa (OR =2.35, P=0.001). The expression of CXCR4 protein was significantly associated with the presence of lymph node and bone metastasis of PCa: for lymph node metastasis positive versus negative, OR was 5.07 and P=0.0003, and for bone metastasis positive versus negative, OR was 7.03 and P=0.003. Cancer-specific survival of patients with PCa was significantly associated with CXCR4 protein expression, and the pooled Hazard ratio was 0.24 and P=0.002. In conclusion, the high expression of CXCR4 protein is a diagnostic biomarker of PCa, and it is significantly associated with T stages. The increased expression of CXCR4 protein is significantly associated with lymph nodes or bone metastasis, and CXCR4 is a poor prognosis predictor for patients with PCa. Taken together, our findings indicate that CXCR4 could be a target not only for the development of therapeutic intervention but also for the noninvasive monitoring of PCa progression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| | - Tie Zhong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, People's Republic of China
| |
Collapse
|
13
|
Zhang C, Li J, Han Y, Jiang J. A meta-analysis for CXCR4 as a prognostic marker and potential drug target in non-small cell lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3267-78. [PMID: 26150700 PMCID: PMC4484670 DOI: 10.2147/dddt.s81564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Recent reports have shown that C-X-C chemokine receptor type 4 (CXCR4) is a candidate oncogene in several types of human tumors, including non-small cell lung cancer (NSCLC). However, the correlation between CXCR4 expression and clinicopathological characteristics of NSCLC remains controversial and has not been emphasized. The aim of this study is to quantitatively evaluate the association of CXCR4 expression with the incidence of NSCLC and clinicopathological characteristics by performing a meta-analysis. Methods A detailed literature search was carried out for related research publications. Only articles in which CXCR4 expression was detected by immunohistochemical staining were included. Odds ratio (OR) and hazard ratio (HR) with 95% confidence intervals (CIs) were calculated and summarized. Results Final analysis of 1,872 NSCLC patients from 19 eligible studies was performed. We observed that CXCR4 expression was significantly higher in NSCLC than in normal lung tissue, based on the pooled OR from ten studies, including 678 NSCLCs and 189 normal lung tissues (OR =16.66, 95% CI =6.94–40.02, P<0.00001). CXCR4 expression was also significantly associated with clinical stages, metastatic status, and overall survival (OS) in NSCLC patients. In addition, CXCR4 mRNA high expression was found to correlate with worse OS of all NSCLC patients followed for 20 years, HR =1.24, P=0.0047. Conclusion The present meta-analysis indicated that CXCR4 protein expression is associated with an increased risk and worse survival in NSCLC patients. The aberrant CXCR4 protein and mRNA expression play an important role in the carcinogenesis and metastasis of NSCLC.
Collapse
Affiliation(s)
- Changyuan Zhang
- Department of Cardiothoracic Surgery, Inner Mongolia Autonomous Region People's Hospital, Inner Mongolia, People's Republic of China
| | - Jie Li
- Department of Oncology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Jiang
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C. Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 2015; 53:609-20. [DOI: 10.1016/j.biomaterials.2015.02.124] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
15
|
Zhou XM, He L, Hou G, Jiang B, Wang YH, Zhao L. Clinicopathological significance of CXCR4 in non-small cell lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1349-58. [PMID: 25834393 PMCID: PMC4357617 DOI: 10.2147/dddt.s71060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Emerging evidence indicates that C-X-C chemokine receptor type 4 (CXCR4) is a candidate oncogene in several types of human tumors including non-small cell lung cancer (NSCLC). However, the correlation between CXCR4 expression and clinicopathological characteristics of NSCLC remains unclear. Here, we conducted a meta-analysis to quantitatively evaluate the association of CXCR4 expression with the incidence of NSCLC and clinicopatho-logical characteristics. Methods A detailed literature search was made from Medline and Web of Science for related research publications written in English and Chinese. The methodological quality of the studies was also evaluated. Analyses of pooled data were performed. Odds ratio (OR) and hazard ratio (HR) were calculated and summarized. Results The final analysis of 1,446 NSCLC patients from 13 eligible studies was performed. We observed that CXCR4 expression was significantly higher in NSCLC than in normal lung tissue from the pooled OR from five studies including 380 NSCLC and 118 normal lung tissue (OR=12.86, 95% confidence interval =3.63–45.59, P<0.0001). CXCR4 expression was not associated with smoking status and type of pathology. However, CXCR4 expression was significantly associated with clinical stages, metastatic status, and overall survival in NSCLC patients. Conclusion The results of this meta-analysis suggest that CXCR4 expression is associated with an increased risk and worse survival in NSCLC patients. The aberrant CXCR4 expression plays an important role in the carcinogenesis and metastasis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- Department of Respiratory Medicine, The Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lan He
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Bing Jiang
- Department of Ultrasonography, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan-He Wang
- Department of Medical Oncology, Liaoning Cancer Hospital, Shenyang, People's Republic of China
| | - Li Zhao
- Department of Respiratory Medicine, The Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
16
|
Lee JY, Kang DH, Chung DY, Kwon JK, Lee H, Cho NH, Choi YD, Hong SJ, Cho KS. Meta-Analysis of the Relationship between CXCR4 Expression and Metastasis in Prostate Cancer. World J Mens Health 2014; 32:167-75. [PMID: 25606566 PMCID: PMC4298820 DOI: 10.5534/wjmh.2014.32.3.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Experimental studies have suggested that the stromal-derived factor-1 (SDF-1)/CXCR4 axis is associated with tumor aggressiveness and metastasis in several malignancies. We performed a meta-analysis to elucidate the relationship between CXCR4 expression and the clinicopathological features of prostate cancer. MATERIALS AND METHODS Data were collected from studies comparing Gleason score, T stage, and the presence of metastasis with CXCR4 levels in human prostate cancer samples. The studies were pooled, and the odds ratio (OR) of CXCR4 expression for clinical and pathological variables was calculated. RESULTS Five articles were eligible for the current meta-analysis. We found no relationship between CXCR4 expression and Gleason score (<7 vs. ≥7). The forest plot using the fixed-effects model indicated an OR of 1.585 (95% confidence interval [CI]: 0.793~3.171; p=0.193). Further, CXCR4 expression was not associated with the T stage (<T3 vs. ≥T3), and the relevant meta-analysis showed OR=1.803 (95% CI: 0.756~4.297, p=0.183). However, increased CXCR4 expression was strongly associated with metastatic disease with a fixed-effects pooled OR of 7.459 (95% CI: 2.665~20.878, p<0.001). CONCLUSIONS Our meta-analysis showed that the higher CXCR4 protein expression in prostate cancer specimens is significantly associated with the presence of metastatic disease. This supports previous experimental data supporting the role played by the SDF-1/CXCR4 axis in metastasis.
Collapse
Affiliation(s)
- Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hyuk Kang
- Department of Urology, Yangpyeong Health Center, Yangpyeong, Korea
| | - Doo Yong Chung
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Kyou Kwon
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyungmin Lee
- Division of Epidemic Intelligence Service, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Nam Hoon Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Joon Hong
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Su Cho
- Department of Urology, Gangnam Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Peng ZH, Kopeček J. HPMA Copolymer CXCR4 Antagonist Conjugates Substantially Inhibited the Migration of Prostate Cancer Cells. ACS Macro Lett 2014; 3:1240-1243. [PMID: 25621190 PMCID: PMC4299399 DOI: 10.1021/mz5006537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023]
Abstract
![]()
A N-(2-hydroxypropyl)methacrylamide
(HPMA) copolymer–CXCR4
antagonist (BKT140) conjugate (P-BKT140) was developed and its biological
activities were tested. Both free BKT140 and monomer MA-GGPLGLAG-BKT140
(MA is methacryloyl) were prepared by solid phase synthesis. P-BKT140
was prepared by reversible addition–fragmentation chain transfer
(RAFT) copolymerization of monomers HPMA and MA-GGPLGLAG-BKT140. The
in vitro results show that the free BKT140 and P-BKT140 have similar
cytotoxicity against human prostate carcinoma PC-3 cells, indicating
that conjugation of BKT140 to HPMA did not significantly impact the
cytotoxicity of BKT140. Both BKT140 and P-BKT140 inhibited the CXCL12-induced
migration of PC-3 prostate cancer cells, but the P-BKT140 conjugate
possessed a substantially higher inhibition activity than free BKT140.
Collapse
Affiliation(s)
- Zheng-Hong Peng
- Departments of †Pharmaceutics and Pharmaceutical Chemistry/CCCD and ‡Bioengineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Jindřich Kopeček
- Departments of †Pharmaceutics and Pharmaceutical Chemistry/CCCD and ‡Bioengineering, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
18
|
Guan G, Zhang Y, Lu Y, Liu L, Shi D, Wen Y, Yang L, Ma Q, Liu T, Zhu X, Qiu X, Zhou Y. The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Lett 2014; 357:254-264. [PMID: 25444927 DOI: 10.1016/j.canlet.2014.11.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
HIF-1α mediates hypoxia-induced expression of the chemokine receptor CXCR4 and contributes to metastasis in many different cancers. We have previously shown that hypoxia promotes migration of human osteosarcoma cells by activating the HIF-1α/CXCR4 pathway. Here, immunohistochemical analysis showed that unlike control osteochondroma samples, osteosarcoma specimens were characterized by elevated expression levels of HIF-1α and CXCR4. Moreover, we found that hypoxia-induced invasiveness was more pronounced in high metastatic potential F5M2 osteosarcoma cells than in low metastatic potential F4 cells, and that this induction was sensitive to treatment with the CXCR4 antagonist AMD3100 and the HIF-1α inhibitor KC7F2. Interestingly, hypoxia-induced CXCR4 expression persisted after cultured osteosarcoma cells were returned to normoxic conditions. These observations were confirmed by experiments in a mouse model of osteosarcoma lung metastasis showing that hypoxia stimulation of pulmonary metastasis was greater in F5M2 than in F4 cells, and was sensitive to treatment with AMD3100. Our study provides further evidence of the contributions of hypoxia and the HIF-1α/CXCR4 pathway to the progression of osteosarcoma, and suggests that this axis might be efficiently leveraged in the development of novel osteosarcoma therapeutics.
Collapse
Affiliation(s)
- Guofeng Guan
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yinglong Zhang
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yao Lu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Lijuan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Doufei Shi
- Department of Geriatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Yanhua Wen
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Lianjia Yang
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qiong Ma
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Tao Liu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xiaodong Zhu
- Department of Microsurgery, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, China.
| | - Xiuchun Qiu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Yong Zhou
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
19
|
High CXC chemokine receptor 4 expression is an adverse prognostic factor in patients with clear-cell renal cell carcinoma. Br J Cancer 2014; 110:2261-8. [PMID: 24714746 PMCID: PMC4007240 DOI: 10.1038/bjc.2014.179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 12/12/2022] Open
Abstract
Background: Aberrant CXC chemokine receptor 4 (CXCR4) expressions in malignant tissues have been reported; however, its role in kidney cancer prognosis remains unknown. The aim of this study was to determine the prognostic value of CXCR4 expression in patients with clear-cell renal cell carcinoma (ccRCC). Methods: The study included 225 patients with ccRCC. The cohort was split into a training set (n=125) and a validation set (n=100). CXC chemokine receptor 4 expression was analysed by immunohistochemical staining and its correlations with clinicopathologic features and prognosis were evaluated. Results: CXCR4-staining intensity increased gradually accompanied with disease progression from TNM stages I to IV in 225 patients with ccRCC. Moreover, high CXCR4 expression indicated reduced overall survival (OS) in the training (P<0.001) and validation (P<0.001) sets, especially for patients with early-stage (TNM stage I+II) diseases. Furthermore, CXCR4 expression was identified as an independent prognostic factor for OS, and combining TNM stage with CXCR4 expression showed a better prognostic value for OS in both sets. Conclusions: High CXCR4 expression, an independent adverse prognostic factor, could be combined with TNM stage to generate a predictive nomogram for clinical outcome in patients with ccRCC.
Collapse
|