1
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Mughees M, Kaushal JB, Sharma G, Wajid S, Batra SK, Siddiqui JA. Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin Cancer Biol 2022; 86:497-512. [PMID: 35181473 PMCID: PMC9793433 DOI: 10.1016/j.semcancer.2022.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
Chemokines are recognized as the major contributor to various tumorigenesis, tumor heterogeneity, and failures of current cancer therapies. The tumor microenvironment (TME) is enriched with chemokines and cytokines and plays a pivotal role in cancer progression. Chronic inflammation is also considered an instructive process of cancer progression, where chemokines are spatiotemporally secreted by malignant cells and leukocyte subtypes that initiate cell trafficking into the TME. In various cancers, prostate cancer (PCa) is reported as one of the leading cancers in the worldwide male population. The chemokines-mediated signaling pathways are intensively involved in PCa progression and metastasis. Emerging evidence suggests that chemokines and cytokines are responsible for the pleiotropic actions in cancer, including the growth, angiogenesis, endothelial mesenchymal transition, leukocyte infiltration, and hormone escape for advanced PCa and therapy resistance. Chemokine's system and immune cells represent a promising target to suppress tumorigenic environments and serve as potential therapy/immunotherapy for the PCa. In this review, an attempt has been made to shed light on the alteration of chemokine and cytokine profiles during PCa progression and metastasis. We also discussed the recent findings of the diverse molecular signaling of these circulating chemokines and their corresponding receptors that could become future targets for therapeutic management of PCa.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA(1)
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Dicitore A, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Persani L, Caraglia M, Vitale G. Antitumor activity of interferon-β1a in hormone refractory prostate cancer with neuroendocrine differentiation. J Endocrinol Invest 2017; 40:761-770. [PMID: 28247216 DOI: 10.1007/s40618-017-0631-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Type I interferons (IFN-α and IFN-β) are a class of cytokines that exert several biological activities, such as modulation of cell proliferation and differentiation and of the immune system. Although these cytokines interact with a common receptor complex, IFN-β showed a more potent antitumor activity than IFN-α in several tumor models. New recombinant human IFN-β products, such as IFN-β1a and IFN-β1b, have been produced in order to improve the stability and bioavailability of natural IFN-β. In this report, we analyzed the effects of recombinant IFN-β1a on the cell proliferation of two human androgen-resistant prostate cancer cell lines with neuroendocrine differentiation (DU-145, PC-3) and related mechanisms of action. METHODS The effects of IFN-β1a on the cell growth proliferation, cell cycle, and apoptosis have been evaluated in DU-145 and PC-3 cells through MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. Moreover, the expression of neuron-specific enolase (NSE), cleaved caspase-3, caspase-8, and PARP was evaluated through Western blotting. RESULTS IFN-β1a showed a significant anti-proliferative activity in both androgen-resistant cell lines. This effect was related to cell cycle perturbation and induction in apoptosis, as shown by flow cytometric analysis, the activation of caspase-3 and caspase-8 and PARP cleavage during incubation with IFN-β1a. Moreover, this cytokine reduced the expression of NSE in both cell lines. CONCLUSIONS Recombinant IFN-β1a (Rebif) showed a potent in vitro anti-proliferative activity in androgen-resistant prostate cancer cells, and it could represent a promising tool for the treatment of this tumor.
Collapse
Affiliation(s)
- A Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy
| | - E S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - M O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Experimental Laboratory of Immuno-rheumatology, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - G Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy
| | - M C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - G Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - L Persani
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - G Vitale
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, via Zucchi 18, Cusano Milanino (Mi), 20095, Milan, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Abstract
Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with favourable disease outcome in several cohorts of patients with cancer. Finally, new anticancer immunotherapies are being developed that are based on recombinant type I IFNs, type I IFN-encoding vectors and type I IFN-expressing cells.
Collapse
|
5
|
Brown SG, Knowell AE, Hunt A, Patel D, Bhosle S, Chaudhary J. Interferon inducible antiviral MxA is inversely associated with prostate cancer and regulates cell cycle, invasion and Docetaxel induced apoptosis. Prostate 2015; 75:266-79. [PMID: 25327819 PMCID: PMC4293202 DOI: 10.1002/pros.22912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND The interferon inducible Myxovirus (influenza virus) resistance A (MxA) is considered as a key mediator of the interferon-induced antiviral response. Mx proteins contain the typical GTP-binding motif and show significant homology to dynamin family of GTPases. Strong interaction of MxA with tubulin suggests that Mx proteins could be involved in mitosis. Studies have shown that MxA inhibit tumor motility/metastasis and virus induced apoptosis. However, the clear association between MxA expression and cancer remains unknown. Meta-analysis suggested that MxA expression was inversely correlated with prostate cancer (PCa). In this study, we demonstrate the expression MxA in PCa and its functional significance on the cancer phenotype. METHODS The expression of MxA protein in prostate cancer was examined by immuno-histochemistry. MxA was knocked down (shMxA) or over-expressed (pMxA) in DU145 or LNCaP PCa cell lines respectively. These cell lines were used to study proliferation, apoptosis, invasion, migration, and anchorage independent growth. Co-localization of MxA with tubulin was performed by immuno-cytochemistry following Docetaxel treatment. RESULTS The expression of MxA protein was significantly decreased in PCa as compared to the normal tissues. DU145 cells lacking MxA (DU145 + chMxA) showed significant increase in proliferation, associated with decreased expression of CDKN1A and B. Increased migration, anchorage independent growth in DU145 + shMxA cells was associated with increased MMP13 expression. Tubulin organization was also dependent on MxA expression. Tubulin polymerizing agents such as Docetaxel was less effective in promoting apoptosis in cells lacking MxA due to altered tubulin organization. Gain of MxA expression in LNCaP cells (LNCaP + pMxA) resulted in cell cycle arrest that was associated with increased expression of CDKN1A. MxA expression was also down-regulated by dihydrotestosterone in LNCaP cells. CONCLUSIONS MxA expression is inversely correlated with prostate cancer. Down-regulation of MxA in LNCaP cells by DHT suggests that MxA could play a significant role in disease progression. Loss of MxA expression results in increased metastasis and decreased sensitivity to Docetaxel suggesting that MxA expression could determine the outcome of chemo-therapeutic treatment. Additional studies will be required to fully establish the cross-talk between androgen receptor-IFN pathway in regulating MxA expression in the normal prostate and prostate cancer. Prostate 75:266-279, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shanora G Brown
- Dept. of Biology, South Carolina State University, Orangeburg, SC 29117
| | - Ashley E Knowell
- Dept. of Biology, South Carolina State University, Orangeburg, SC 29117
| | - Aisha Hunt
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314
| | - Divya Patel
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314
| | - Sushma Bhosle
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314
- Corresponding Author: Dr. Jaideep Chaudhary, Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA 30314 Tel: 404 880 6821 FAX: 404 880 8065
| |
Collapse
|
6
|
Wijesundara DK, Xi Y, Ranasinghe C. Unraveling the convoluted biological roles of type I interferons in infection and immunity: a way forward for therapeutics and vaccine design. Front Immunol 2014; 5:412. [PMID: 25221557 PMCID: PMC4148647 DOI: 10.3389/fimmu.2014.00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
It has been well-established that type I interferons (IFN-Is) have pleiotropic effects and play an early central role in the control of many acute viral infections. However, their pleiotropic effects are not always beneficial to the host and in fact several reports suggest that the induction of IFN-Is exacerbate disease outcomes against some bacterial and chronic viral infections. In this brief review, we probe into this mystery and try to develop answers based on past and recent studies evaluating the roles of IFN-Is in infection and immunity as this is vital for developing effective IFN-Is based therapeutics and vaccines. We also discuss the biological roles of an emerging IFN-I, namely IFN-ε, and discuss its potential use as a mucosal therapeutic and/or vaccine adjuvant. Overall, we anticipate the discussions generated in this review will provide new insights for better exploiting the biological functions of IFN-Is in developing efficacious therapeutics and vaccines in the future.
Collapse
Affiliation(s)
- Danushka Kumara Wijesundara
- Virology Laboratory, Department of Surgery, Basil Hetzel Institute, University of Adelaide , Adelaide, SA , Australia ; Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Translational Research Institute, UQ School of Medicine, The University of Queensland , Woolloongabba, QLD , Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|