1
|
Jiang W, Xu Y, Chen X, Pan S, Zhu X. E26 transformation-specific variant 4 as a tumor promotor in human cancers through specific molecular mechanisms. Mol Ther Oncolytics 2021; 22:518-527. [PMID: 34553037 PMCID: PMC8433062 DOI: 10.1016/j.omto.2021.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
E26 transformation-specific (ETS) variant 4 (ETV4) is an important transcription factor that belongs to the ETS transcription factor family and is essential for much cellular physiology. Recent evidence has revealed that ETV4 is aberrantly expressed in many types of tumors, and its overexpression is related to poor prognosis of cancer patients. Additionally, increasing studies have identified that ETV4 promotes cancer growth, invasion, metastasis, and drug resistance. Mechanistically, the level of ETV4 is regulated by some post-translation modulations in a broad spectrum of cancers. However, little progress has been made to comprehensively summarize the critical roles of ETV4 in different human cancers. Hence, this review mainly focuses on the physiological functions of ETV4 in various human tumors. In addition, the molecular mechanisms of ETV4-mediated cancer progression were elucidated, including how ETV4 modulates its downstream signaling pathways and how ETV4 is regulated by some factors. On this basis, the present review may provide a valuable therapeutics strategy for future cancer treatment by targeting ETV4-related pathways.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
2
|
Hellwege JN, Stallings S, Torstenson ES, Carroll R, Borthwick KM, Brilliant MH, Crosslin D, Gordon A, Hripcsak G, Jarvik GP, Linneman JG, Devi P, Peissig PL, Sleiman PAM, Hakonarson H, Ritchie MD, Verma SS, Shang N, Denny JC, Roden DM, Velez Edwards DR, Edwards TL. Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network. Sci Rep 2019; 9:6077. [PMID: 30988330 PMCID: PMC6465359 DOI: 10.1038/s41598-019-42427-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) results in a significant public health burden due to the morbidity caused by the disease and many of the available remedies. As much as 70% of men over 70 will develop BPH. Few studies have been conducted to discover the genetic determinants of BPH risk. Understanding the biological basis for this condition may provide necessary insight for development of novel pharmaceutical therapies or risk prediction. We have evaluated SNP-based heritability of BPH in two cohorts and conducted a genome-wide association study (GWAS) of BPH risk using 2,656 cases and 7,763 controls identified from the Electronic Medical Records and Genomics (eMERGE) network. SNP-based heritability estimates suggest that roughly 60% of the phenotypic variation in BPH is accounted for by genetic factors. We used logistic regression to model BPH risk as a function of principal components of ancestry, age, and imputed genotype data, with meta-analysis performed using METAL. The top result was on chromosome 22 in SYN3 at rs2710383 (p-value = 4.6 × 10-7; Odds Ratio = 0.69, 95% confidence interval = 0.55-0.83). Other suggestive signals were near genes GLGC, UNCA13, SORCS1 and between BTBD3 and SPTLC3. We also evaluated genetically-predicted gene expression in prostate tissue. The most significant result was with increasing predicted expression of ETV4 (chr17; p-value = 0.0015). Overexpression of this gene has been associated with poor prognosis in prostate cancer. In conclusion, although there were no genome-wide significant variants identified for BPH susceptibility, we present evidence supporting the heritability of this phenotype, have identified suggestive signals, and evaluated the association between BPH and genetically-predicted gene expression in prostate.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Stallings
- Division of Geriatric Medicine, Meharry-Vanderbilt Alliance, Nashville, TN, USA
| | - Eric S Torstenson
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Carroll
- Department of Biomedical Informatics Vanderbilt University, Nashville, TN, USA
| | | | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - David Crosslin
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam Gordon
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Medical Informatics Services, New York-Presbyterian Hospital, New York, NY, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA
| | - James G Linneman
- Office of Research Computing and Analytics/Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Parimala Devi
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, USA
| | - Peggy L Peissig
- Center for Computational and Biomedical Informatics, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Patrick A M Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ning Shang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Josh C Denny
- Department of Biomedical Informatics Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Department of Biomedical Informatics Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics Vanderbilt University, Nashville, TN, USA.
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|