2
|
Zhang C, Xiong X, Li Y, Huang K, Liu L, Peng X, Weng W. Cytokine-induced killer cells/natural killer cells combined with anti-GD2 monoclonal antibody increase cell death rate in neuroblastoma SK-N-SH cells. Oncol Lett 2019; 18:6525-6535. [PMID: 31807172 PMCID: PMC6876305 DOI: 10.3892/ol.2019.11020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common extracranial, solid, pediatric malignancies. Despite improvements in conventional therapies, including surgery, chemotherapy and radiation therapy, the prognosis of stage IV NB remains poor, indicating that novel treatment strategies are required. Immunotherapies, such as anti-GD2 monoclonal antibodies, used alone or in combination with cytokines, and peripheral blood mononuclear cells or cord blood mononuclear cells (CBMNCs), have been indicated to cause NB cell death and to prolong patient survival in high-risk NB; however, they remain limited by severe cytotoxicity and side effects. In the present study, it was determined that anti-GD2 monoclonal antibody alone or CBMNC-isolated cytokine-induced killer (CIK)/natural killer (NK) cells alone significantly induced cell death of NB SK-N-SH cells, and the combination of anti-GD2 antibody and CIK/NK cells could significantly increase the cell death rate compared with either treatment alone. In addition, based on a method referred to our previous study, it was identified that a two-cytokine culture system, using interleukin IL-2 and IL-7, effectively stimulated the proliferation of CIK/NK cells. These results serve to suggest a novel treatment strategy for relapsed/refractory NB with high efficiency and few side effects.
Collapse
Affiliation(s)
- Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaomin Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenjun Weng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
3
|
Zuo X, Li M, Yang Y, Liang T, Yang H, Zhao X, Yang D. Interleukin gene polymorphisms in Chinese Han population with breast cancer, a case-control study. Oncotarget 2017; 9:17994-18001. [PMID: 29719585 PMCID: PMC5915052 DOI: 10.18632/oncotarget.23157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/05/2022] Open
Abstract
Cytokines are known as important regulators of the cancer involved in inflammatory and immunological responses. This fact and plethora of gene polymorphism data prompted us to investigate IL1 gene polymorphisms in breast cancer (BC) patients. Totally, 530 patients with BC and 628 healthy control women were studied. The genetic polymorphisms for IL1 were analyzed by Massarray Sequencing method. Three single nucleotide polymorphisms (SNPs) identified in IL1B, IL1R1 gene are thought to influence breast cancer risk. The results of the association between IL-1B, IL1R1 polymorphisms and breast cancer risk have significant. We found that the variant TT genotype of rs10490571 was associated with a significantly increased breast cancer risk (TT vs. CC: OR = 2.82, 95% CI = 1.12–7.08, P = 0.047 for the codominant model). For rs16944 (AG vs. GG: OR = 0.60, 95% CI = 0.41–0.90, P = 0.034 for the codominant model) and rs1143623 (CG vs. CC: OR = 0.65, 95% CI = 0.45–0.94, P = 0.023 for the codominant model) have significant associations were found in genetic models. In conclusion, the present analysis suggests a correlation of polymorphic markers within the IL-1 gene locus with the risk in developing breast cancer. Taken together with our finding that IL1B, IL1R1 gene three SNP are also associated with the risk for the disease, we suggest that inflammation via innate and adaptive immunity contributes to multifactorial hereditary predisposition to pathogenesis of the breast cancer.
Collapse
Affiliation(s)
- Xiaoxiao Zuo
- Department of Radiation Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, People's Republic of China
| | - Miao Li
- Department of Internal Medicine Oncology, The Fifth People's Hospital of Qinghai Province, Xining, Qinghai 810007, China
| | - Ya Yang
- Department of Radiation Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, People's Republic of China
| | - Tiansong Liang
- Department of Radiation Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, People's Republic of China
| | - Hongyao Yang
- Department of Radiation Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, People's Republic of China
| | - Xinhan Zhao
- Department of Internal Medicine Oncology, The Fifth People's Hospital of Qinghai Province, Xining, Qinghai 810007, China
| | - Daoke Yang
- Department of Radiation Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, People's Republic of China
| |
Collapse
|