1
|
Cometa S, Busto F, Scalia AC, Castellaneta A, Gentile P, Cochis A, Manfredi M, Borrini V, Rimondini L, De Giglio E. Effectiveness of gellan gum scaffolds loaded with Boswellia serrata extract for in-situ modulation of pro-inflammatory pathways affecting cartilage healing. Int J Biol Macromol 2024; 277:134079. [PMID: 39038574 DOI: 10.1016/j.ijbiomac.2024.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/09/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
In this study, we developed a composite hydrogel based on Gellan gum containing Boswellia serrata extract (BSE). BSE was either incorporated directly or loaded into an MgAl-layered double hydroxide (LDH) clay to create a multifunctional cartilage substitute. This composite was designed to provide anti-inflammatory properties while enhancing chondrogenesis. Additionally, LDH was exploited to facilitate the loading of hydrophobic BSE components and to improve the hydrogel's mechanical properties. A calcination process was also adopted on LDH to increase BSE loading. Physicochemical and mechanical characterizations were performed by spectroscopic (XPS and FTIR), thermogravimetric, rheological, compression test, weight loss and morphological (SEM) investigations. RPLC-ESI-FTMS was employed to investigate the boswellic acids release in simulated synovial fluid. The composites were cytocompatible and capable of supporting the mesenchymal stem cells (hMSC) growth in a 3D-conformation. Loading BSE resulted in the modulation of the pro-inflammatory cascade by down-regulating COX2, PGE2 and IL1β. Chondrogenesis studies demonstrated an enhanced differentiation, leading to the up-regulation of COL 2 and ACAN. This effect was attributed to the efficacy of BSE in reducing the inflammation through PGE2 down-regulation and IL10 up-regulation. Proteomics studies confirmed gene expression findings by revealing an anti-inflammatory protein signature during chondrogenesis of the cells cultivated onto loaded specimens. Concluding, BSE-loaded composites hold promise as a tool for the in-situ modulation of the inflammatory cascade while preserving cartilage healing.
Collapse
Affiliation(s)
| | - Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| | - Alessandro C Scalia
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Andrea Castellaneta
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Piergiorgio Gentile
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Vittoria Borrini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| |
Collapse
|
2
|
Wiese M, Pohlmeier B, Kubiak K, El-Khouly FE, Sitte M, Carcaboso AM, Baugh JN, Perwein T, Nussbaumer G, Karremann M, Gielen GH, Salinas G, Kramm CM. Boswellic acid formulations are not suitable for treatment of pediatric high-grade glioma due to tumor promoting potential. J Tradit Complement Med 2024; 14:101-108. [PMID: 38223806 PMCID: PMC10785237 DOI: 10.1016/j.jtcme.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Pediatric high-grade gliomas (pedHGG) comprise a very poor prognosis. Thus, parents of affected children are increasingly resorting to complementary and alternative medicine (CAM), among those Boswellia extracts. However, nothing is known about the therapeutic effectiveness of their active substances, Boswellic acids (BA) in pedHGG. Thus, we aimed to investigate if the three main Boswellic acids (BA) present in Boswellia plants, alpha-boswellic acid (α-BA), beta-boswellic acid (β-BA) and 3-acetyl-11-keto-beta-boswellic acid (AKBA) hold any promising potential for treatment of affected pedHGG patients. Experimental procedure Histone 3 (H3)-wildtype and H3.3K27M-mutant pedHGG cell lines were treated with BA, either alone or in combination with radio-chemotherapy with temozolomide. Cell viability, stemness properties, apoptosis, in ovo tumor growth and the transcriptome was investigated upon BA treatment. Results and conclusion Interestingly, α-BA and β-BA treatment promoted certain tumor properties in both pedHGG cells. AKBA treatment reduced cell viability and colony growth accompanied by induction of slight anti-inflammatory effects especially in H3.3K27M-mutant pedHGG cells. However, no effects on apoptosis and in ovo tumor growth were found. In conclusion, besides positive anti-tumor effects of AKBA, tumor promoting effects were observed upon treatment with α-BA and β-BA. Thus, only pure AKBA formulations may be used to exploit any potential positive effects in pedHGG patients. In conclusion, the use of commercially available supplements with a mixture of different BA cannot be recommended due to detrimental effects of certain BA whereas pure AKBA formulations might hold some potential as therapeutic supplement for treatment of pedHGG patients.
Collapse
Affiliation(s)
- Maria Wiese
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Goettingen, Robert Koch Straße 40, Goettingen, Germany
| | - Bente Pohlmeier
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Goettingen, Robert Koch Straße 40, Goettingen, Germany
| | - Klaudia Kubiak
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Goettingen, Robert Koch Straße 40, Goettingen, Germany
| | - Fatma E. El-Khouly
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, De Boelelaan 1118 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maren Sitte
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University Medical Center Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu/Institut de Recerca, Sant Joan de Deu 2, Barcelona, Spain
| | - Joshua N. Baugh
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Thomas Perwein
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 38, Graz, Austria
| | - Gunther Nussbaumer
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 38, Graz, Austria
| | - Michael Karremann
- Institute of Neuropathology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Gerrit H. Gielen
- Institute of Neuropathology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University Medical Center Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Christof M. Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Goettingen, Robert Koch Straße 40, Goettingen, Germany
| |
Collapse
|
3
|
Ohmura K, Tomita H, Hara A. Peritumoral Edema in Gliomas: A Review of Mechanisms and Management. Biomedicines 2023; 11:2731. [PMID: 37893105 PMCID: PMC10604286 DOI: 10.3390/biomedicines11102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Treating malignant glioma is challenging owing to its highly invasive potential in healthy brain tissue and the formation of intense surrounding edema. Peritumoral edema in gliomas can lead to severe symptoms including neurological dysfunction and brain herniation. For the past 50 years, the standard treatment for peritumoral edema has been steroid therapy. However, the discovery of cerebral lymphatic vessels a decade ago prompted a re-evaluation of the mechanisms involved in brain fluid regulation and the formation of cerebral edema. This review aimed to describe the clinical features of peritumoral edema in gliomas. The mechanisms currently known to cause glioma-related edema are summarized, the limitations in current cerebral edema therapies are discussed, and the prospects for future cerebral edema therapies are presented. Further research concerning edema surrounding gliomas is needed to enhance patient prognosis and improve treatment efficacy.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Department of Neurosurgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| | - Akira Hara
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
| |
Collapse
|
4
|
Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, Setzer WN, Faizal Abdull Razis A, Modu B, Butnariu M, Sharifi-Rad J. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol 2023; 14:1187181. [PMID: 37601048 PMCID: PMC10434769 DOI: 10.3389/fphar.2023.1187181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of highly effective plant-based medications with few or no side effects, the use of phytomedicines against complex diseases such as cancer is becoming more widespread. The broadly recognized pentacyclic triterpenes known as boswellic acids (BAs) are derived from the oleogum resin, or frankincense, extracted from the plant species of the genus Boswellia. The frankincense mixture contains various BA types, each having a different potential and helping treat certain cancers. This review focuses on details regarding the traits of the BAs, their roles as anti-cancer agents, the mechanism underlying their activities, and the function of their semi-synthetic derivatives in managing and treating certain cancers. The review also explores the biological sources of BAs, how they are conserved, and how biotechnology might help preserve and improve in vitro BA production. The review concludes that the BAs and their semi-synthetic derivatives are effective against a broad spectrum of cancer cell lines. The detailed information in the review can be helpful for researchers to gain more information about BAs and BA-based medications for efficient and cost-effective cancer treatments.
Collapse
Affiliation(s)
- Vijay Laxmi Trivedi
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Ruchi Soni
- Regional Centre for Organic and Natural Farming, Ghaziabad, Uttar Pradesh, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Sureda
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, Palma de Mallorca, Spain
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” From Timisoara, Timis, Romania
| | | |
Collapse
|
5
|
Rajabian A, Farzanehfar M, Hosseini H, Arab FL, Nikkhah A. Boswellic acids as promising agents for the management of brain diseases. Life Sci 2022; 312:121196. [DOI: 10.1016/j.lfs.2022.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
6
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
7
|
Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, Rahman MH, Najda A, Albadrani GM, Sayed AA, Akhtar MF, Saleem A, Altyar AE, Kaushik D, Abdel-Daim MM. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother 2021; 141:111928. [PMID: 34323701 DOI: 10.1016/j.biopha.2021.111928] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme is one of the most deadly malignant tumors, with more than 10,000 cases recorded annually in the United States. Various clinical analyses and studies show that certain chronic diseases, including cancer, interact between cell-reactive radicals rise and pathogenesis. Reactive oxygen and nitrogenous sources include endogenous (physiological processes), and exogenous sources contain reactive oxygen and nitrogen (xenobiotic interaction). The cellular oxidation/reduction shifts to oxidative stress when the regulation mechanisms of antioxidants are surpassed, and this raises the ability to damage cellular lipids, proteins, and nucleic acids. OBJECTIVE: This review is focused on how phytochemicals play crucial role against glioblastoma multiforme and to combat these, bioactive molecules and their derivatives are either used alone, in combination with anticancer drugs or as nanomedicine formulations for better cancer theranostics over the conventional approach. CONCLUSION: Bioactive molecules found in seeds, vegetables, and fruits have antioxidant, anti-inflammatory, and anticancer properties that may help cancer survivors feel better throughout chemotherapy or treatment. However, incorporating them into the nanocarrier-based drug delivery for the treatment of GBMs, which could be a promising therapeutic strategy for this tumor entity, increasing targeting effectiveness, increasing bioavailability, and reducing side effects with this target-specificity, drug internalization into cells is significantly improved, and off-target organ aggregation is reduced.
Collapse
Affiliation(s)
- Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, Madhya Pradesh, India; PRISAL Foundation (Pharmaceutical Royal International Society), India.
| | - Pooja Tagde
- Practice of Medicine Department, Govt. Homeopathy College, Bhopal, Madhya Pradesh, India
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), India
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, China; Department of Science & Engineering, Novel Global Community Educational Foundation, Australia
| | - Vishal Garg
- Jaipur School of Pharmacy, Maharaj Vinayak Global University, Jaipur, Rajasthan, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, South Korea
| | - Md Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, South Korea; Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
8
|
Albini A, Bassani B, Baci D, Dallaglio K, Gallazzi M, Corradino P, Bruno A, Noonan DM. Nutraceuticals and "Repurposed" Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer. Curr Med Chem 2019; 26:973-987. [PMID: 28933290 DOI: 10.2174/0929867324666170920144130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic, degenerative diseases are often characterized by inflammation and aberrant angiogenesis. For these pathologies, including rheumatoid arthritis, cardiovascular and autoimmune diseases, cancer, diabetes, and obesity, current therapies have limited efficacy. OBJECTIVES The validation of novel (chemo)preventive and interceptive approaches, and the use of new or repurposed agents, alone or in combination with registered drugs, are urgently required. RESULTS Phytochemicals (triterpenoids, flavonoids, retinoids) and their derivatives, nonsteroidal anti-inflammatory drugs (aspirin) as well as biguanides (metformin and phenformin) originally developed from phytochemical backbones, are multi-target agents showing antiangiogenic and anti-anti-inflammatory proprieties. Many of them target AMPK and metabolic pathways such as the mTOR axis. We summarize the beneficial effects of several compounds in conferring protection and supporting therapy, and as a paradigm, we present data on terpenoids & biquanides on beer hop xanthohumol and hydroxytryrosol from olive mill waste waters. CONCLUSIONS These molecules could be employed for combinatorial chemoprevention and interception approaches or chemoprevention/therapy regimens for cancer and other chronic complex diseases.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Barbara Bassani
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Denisa Baci
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Katiuscia Dallaglio
- Laboratory of Translational Research, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Matteo Gallazzi
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Corradino
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Androgen receptor: a potential therapeutic target for glioblastoma. Oncotarget 2018; 9:19980-19993. [PMID: 29731997 PMCID: PMC5929440 DOI: 10.18632/oncotarget.25007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
The median survival time of patients with glioblastoma is still poor (14.6 month), partly due to a lack of effective treatment. We have observed that androgen receptor (AR) is amplified in glioblastomas at the DNA, RNA and protein levels. The AR gene was amplified in 27% of glioblastoma specimens from men (n=22) and of 38.2% from women (n=21). AR-RNA was overexpressed (>2.5 fold) in 93% (n=30), and AR-protein was induced (>two fold) in 56% of the glioblastomas samples (n=16). Thirty percent of the glioblastomas (n=21) also expressed a constitutively active AR-splice-variant (AR-V7/AR3) lacking the Ligand-Binding-Domain. Following these findings, we examined the effect of pharmacological inhibition of androgen receptor in vitro and in vivo, as well as of genetic silencing of the receptor in glioblastoma cell lines. AR antagonists, induced concentration-dependent death in three glioblastoma cell lines, as well as in two glioma initiating cell lines. Silencing of AR expression by siRNA induced cell death in the three tested glioblastoma cell lines. Enzalutamide given orally to nude mice bearing subcutaneous human glioma xenografts resulted in a 72% reduction in tumor volume (p=0.0027). The presence of AR-V7/AR3 in glioblastoma, together with the present data showing that genetic silencing of the full length AR in cell lines and pharmacological inhibition of AR, induce GBM cell death in vivo and in vitro, point to the important role of AR in GBM survival and render a potential therapeutic target for this devastating disease.
Collapse
|
10
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
11
|
Iram F, Khan SA, Husain A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|