1
|
Renu K. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102134. [PMID: 39500393 DOI: 10.1016/j.jormas.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/10/2024]
Abstract
HPV infection and the type of host microbiota play a role in the formation of HNCs. In contrast to other forms of OSCC, where the relationship between HPV and the cancer is less obvious, HPV-HNSCC is a particular type of oropharyngeal cancer. HPV has infected a stratified squamous epithelium, which includes the throat, mouth, anogenital tract, respiratory tract, and skin on the hands and feet. HPV DNA was found in high amounts in the saliva and gargle samples of patients with HPV-related HNSCC. It has been discovered that the specificity of oral mRNA (HPV) and HPV DNA identification varies from 23 % to 82 % in the identification of OPSCCs. The higher rate of HPV transmission through vaginal-oral compared to penile-oral sexual activity may be the reason for the difference in HPV-positive HNSCC patients between males and females. The researchers postulate that HPV-inactive tumours signify an advanced stage of HPV-positive HNSCC, which explains why there are racial disparities in gene expression that correspond to different disease progressions in Black and White patients. The increase of CD8+ T cells in the cancer microenvironment, linked to P16 activation, extends life expectancy in OSCC. tumour markers methylation caused by HPV and suggested using them as possible HNC biomarkers. Fusobacterium levels are much higher in patients with OSCC, while Actinobacteria phylum and Firmicutes are significantly lower. It also serves as a biomarker for notable variations found in Firmicutes, Actinobacteria, Fusobacteriales, Fusobacteriia, Fusobacterium, and Fusobacteriaceae. Therefore, based on this we evidence, we could investigate the role of oral microbiota as a maker for the HPV associated HNSCC.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Das S, Karuri S, Chakraborty J, Basu B, Chandra A, Aravindan S, Chakraborty A, Paul D, Ray JG, Lechner M, Beck S, Teschendorff AE, Chatterjee R. Universal penalized regression (Elastic-net) model with differentially methylated promoters for oral cancer prediction. Eur J Med Res 2024; 29:458. [PMID: 39261895 PMCID: PMC11389552 DOI: 10.1186/s40001-024-02047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND DNA methylation showed notable potential to act as a diagnostic marker in many cancers. Many studies proposed DNA methylation biomarker in OSCC detection, while most of these studies are limited to specific cohorts or geographical location. However, the generalizability of DNA methylation as a diagnostic marker in oral cancer across different geographical locations is yet to be investigated. METHODS We used genome-wide methylation data from 384 oral cavity cancer and normal tissues from TCGA HNSCC and eastern India. The common differentially methylated CpGs in these two cohorts were used to develop an Elastic-net model that can be used for the diagnosis of OSCC. The model was validated using 812 HNSCC and normal samples from different anatomical sites of oral cavity from seven countries. Droplet Digital PCR of methyl-sensitive restriction enzyme digested DNA (ddMSRE) was used for quantification of methylation and validation of the model with 22 OSCC and 22 contralateral normal samples. Additionally, pyrosequencing was used to validate the model using 46 OSCC and 25 adjacent normal and 21 contralateral normal tissue samples. RESULTS With ddMSRE, our model showed 91% sensitivity, 100% specificity, and 95% accuracy in classifying OSCC from the contralateral normal tissues. Validation of the model with pyrosequencing also showed 96% sensitivity, 91% specificity, and 93% accuracy for classifying the OSCC from contralateral normal samples, while in case of adjacent normal samples we found similar sensitivity but with 20% specificity, suggesting the presence of early disease methylation signature at the adjacent normal samples. Methylation array data of HNSCC and normal tissues from different geographical locations and different anatomical sites showed comparable sensitivity, specificity, and accuracy in detecting oral cavity cancer with across. Similar results were also observed for different stages of oral cavity cancer. CONCLUSIONS Our model identified crucial genomic regions affected by DNA methylation in OSCC and showed similar accuracy in detecting oral cancer across different geographical locations. The high specificity of this model in classifying contralateral normal samples from the oral cancer compared to the adjacent normal samples suggested applicability of the model in early detection.
Collapse
Affiliation(s)
- Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
| | - Saikat Karuri
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
| | - Baidehi Basu
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
| | - Aditi Chandra
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
- Univeristy of Pennsylvania, Philadelphia, 19104, USA
| | - S Aravindan
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | | | - Debashis Paul
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India
- Department of Statistics, U C Davis, 4222 Mathematical Sciences Building, Davis, CA, 95616, USA
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Matt Lechner
- University College London Cancer Institute, University College London, 72 Huntley St, London, WC1E 6DD, UK
| | - Stephan Beck
- University College London Cancer Institute, University College London, 72 Huntley St, London, WC1E 6DD, UK
| | - Andrew E Teschendorff
- University College London Cancer Institute, University College London, 72 Huntley St, London, WC1E 6DD, UK
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata, 700 108, India.
| |
Collapse
|
3
|
Constantin M, Chifiriuc MC, Mihaescu G, Vrancianu CO, Dobre EG, Cristian RE, Bleotu C, Bertesteanu SV, Grigore R, Serban B, Cirstoiu C. Implications of oral dysbiosis and HPV infection in head and neck cancer: from molecular and cellular mechanisms to early diagnosis and therapy. Front Oncol 2023; 13:1273516. [PMID: 38179168 PMCID: PMC10765588 DOI: 10.3389/fonc.2023.1273516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations. Thus, novel microbiome-derived biomarkers and interventions could significantly contribute to achieving the desideratum of personalized management of oncologic patients, regarding both early diagnosis and treatment. The results reported by different studies are not always congruent regarding the variations in the abundance of different taxons in HNCs. However, there is a consistent reporting of a higher abundance of Gram-negative species such as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis, Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas, Enterobacterales, which are probably responsible of chronic inflammation and modulation of tumor microenvironment. Candida albicans is the dominant fungi found in oral carcinoma being also associated with shorter survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes and Peptostreptococcus) have been associated with later stages and larger tumor, suggesting their potential to be used as biomarkers for tumor stratification and prognosis. On the other hand, increased abundance of Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of HNC. Microbiome could also provide biomarkers for differentiating between oropharyngeal and hypopharyngeal cancers as well as between HPV-positive and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive tests for microbiome-derived biomarkers detection in oral and throat cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis could also impact the HNCs therapy and associated side-effects of radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors harbor fewer mutations, as well as different DNA methylation pattern and tumor microenvironment. Therefore, elucidation of the molecular mechanisms by which oral microbiota and HPV infection influence the HNC initiation and progression, screening for HPV infection and vaccination against HPV, adopting a good oral hygiene, and preventing oral dysbiosis are important tools for advancing in the battle with this public health global challenge.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Romanian Academy, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena-Georgiana Dobre
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca Grigore
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Zhang Z, Lu Y, Vosoughi S, Levy J, Christensen B, Salas L. HiTAIC: hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. NAR Cancer 2023; 5:zcad017. [PMID: 37089814 PMCID: PMC10113876 DOI: 10.1093/narcan/zcad017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Human cancers are heterogenous by their cell composition and origination site. Cancer metastasis generates the conundrum of the unknown origin of migrated tumor cells. Tracing tissue of origin and tumor type in primary and metastasized cancer is vital for clinical significance. DNA methylation alterations play a crucial role in carcinogenesis and mark cell fate differentiation, thus can be used to trace tumor tissue of origin. In this study, we employed a novel tumor-type-specific hierarchical model using genome-scale DNA methylation data to develop a multilayer perceptron model, HiTAIC, to trace tissue of origin and tumor type in 27 cancers from 23 tissue sites in data from 7735 tumors with high resolution, accuracy, and specificity. In tracing primary cancer origin, HiTAIC accuracy was 99% in the test set and 93% in the external validation data set. Metastatic cancers were identified with a 96% accuracy in the external data set. HiTAIC is a user-friendly web-based application through https://sites.dartmouth.edu/salaslabhitaic/. In conclusion, we developed HiTAIC, a DNA methylation-based algorithm, to trace tumor tissue of origin in primary and metastasized cancers. The high accuracy and resolution of tumor tracing using HiTAIC holds promise for clinical assistance in identifying cancer of unknown origin.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
| | - Yunrui Lu
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
| | - Soroush Vosoughi
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Joshua J Levy
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
- Department of Pathology and Dermatology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- To whom correspondence should be addressed. Tel: +1 603 646 5420;
| |
Collapse
|
5
|
Integrated Multi-Omics Signature Predicts Survival in Head and Neck Cancer. Cells 2022; 11:cells11162536. [PMID: 36010616 PMCID: PMC9406438 DOI: 10.3390/cells11162536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Cancer (HNC) is characterized by phenotypic, biological, and clinical heterogeneity. Despite treatment modalities, approximately half of all patients will die of the disease. Several molecular biomarkers have been investigated, but until now, without clinical translation. Here, we identified an integrative nine-gene multi-omics signature correlated with HNC patients’ survival independently of relapses or metastasis development. This prognosis multi-omic signature comprises genes mapped in the chromosomes 1q, 3p, 8q, 17q, 19p, and 19q and encompasses alterations at copy number, gene expression, and methylation. Copy number alterations in LMCD1-A1S and GRM7, the methylation status of CEACAM19, KRT17, and ST18, and the expression profile of RPL29, UBA7, FCGR2C, and RPSAP58 can predict the HNC patients’ survival. The difference higher than two years observed in the survival of HNC patients that harbor this nine-gene multi-omics signature can represent a significant step forward to improve patients’ management and guide new therapeutic targets development.
Collapse
|
6
|
Liu Z, Yang X, Liu R, Bao J, An N, Jiang S, Miao S, Guo C, Qu G, Meng H. Phototherapy together with it triggered immunological response for Anti-HPV treatment of oropharyngeal cancer: Removing tumor and pathogenic virus simultaneously. Biomaterials 2021; 272:120777. [PMID: 33813258 DOI: 10.1016/j.biomaterials.2021.120777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) is one of most common cancers that often brings lots of inconvenience to the patient in swallowing and phonation even after the operation. Moreover, OPSCC is typically as nodal metastases and high recurrence rate due to the high-risk human papillomavirus (HPV) infection for 90% of patients. Obviously, completely curing OPSCC requires simultaneous removal of solid tumor and related pathogenic virus, which is very indispensable but never be realized by any kind of clinical therapy up to now. In this work, we selected the ZrC nanoparticles as difunctional photoactive substance for synchronous generation of hyperthermia and reactive oxygen species (ROS) under NIR excitation. The resultant synergistic photothermal and photodynamic treatment outcome contributed to an excellent anti-tumor effect. The phototherapy of this work was found not only to be able to damage cancer cells directly, but also could trigger the host immunity for further tumor removal and desirable HPV inactivation. An immunologic mechanism of this work was reasonable proposed by monitoring level of shock protein (HSP), calreticulin (CRT), T lymphocytes and dendritic cells (DCs) and immune check point of B7H3, B7H4 and PD-L1 post phototherapy. It was found that tumor-associated antigens of CRT ("eat-me" signal), HSPs and cell debris were released as cancer cell damage, and then the adaptive immune system and the congenital immunity were triggered to activate DCs maturity, antigen presentation to T cells, proliferation of CD4+ and CD8+ T cells, recruiting macrophages and NK cells and so forth immune responses. Being the first example of using phototherapy for virus-related cancer study, this work opens the door for photo-immunotherapy.
Collapse
Affiliation(s)
- Zhao Liu
- Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Xinxin Yang
- Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Hospital, Guangzhou, China
| | - Junjie Bao
- Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Na An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Shan Jiang
- Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Susheng Miao
- Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Guofan Qu
- Harbin Medical University Cancer Hospital, Harbin, 150080, China.
| | - Hongxue Meng
- Harbin Medical University Cancer Hospital, Harbin, 150080, China.
| |
Collapse
|
7
|
Mu H, Pang H, Zheng C, Wang K, Hu N, Zhang B. Photothermal treatment of oropharyngeal cancer with carbon-defective silicon carbide. J Mater Chem B 2021; 9:5284-5292. [PMID: 34137419 DOI: 10.1039/d1tb00876e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oral squamous carcinoma (OSCC) is a clinical common tumor with high recurrence rate and low 5 year survival rate. In this work, photothermal antitumor treatment has been performed to treat OSCC by taking anti-wound infection into consideration. By introducing C defects, we have successfully converted the semi-conductive SiC into metallic carbon-defective silicon carbide (SiC1-x), and endowed it with the near infrared absorption property for photothermal therapy (PTT). The results revealed that SiC1-x mediated PTT treatment could remove solid OSCC tumor in a biosafe way, showing low hematotoxicity, cytotoxicity and tissue toxicity. Moreover, the low invasion of PTT treatment could not only prevent the invasion of bacteria, but also realize an antibacterial effect on the wound, both of which are important for oral surgery. SiC1-x could be excreted from the body post treatment, which thus reduces the long-term potential toxicity. On the whole, this study provided a promising way to treat OSCC in an effective and safe way.
Collapse
Affiliation(s)
- Haibin Mu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| | - Haiyang Pang
- Oral Implant Center, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Ce Zheng
- Medical Affairs Department, Harbin Medical University, Harbin 150086, China
| | - Kaixin Wang
- Shanghai Chaowei Nanotechnology Co. Ltd., No. 487, Edward, Road, Jiading District, Shanghai, China
| | - Narisu Hu
- Oral Implant Center, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China. and Oral Implant Center, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
8
|
Meng HX, Yang XX, Liu RQ, Bao JJ, Hou YJ, Sun J, Miao SS, Qu GF. The Relationship Between Human Papillomavirus, OFD1 and Primary Ciliogenesis in the Progression of Oropharyngeal Cancer: A Retrospective Cohort Study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:633-644. [PMID: 33244255 PMCID: PMC7685095 DOI: 10.2147/pgpm.s271735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Purpose Infection with human papillomavirus (HPV) has been indicated to be a important risk factor for oropharyngeal squamous cell carcinoma (OPSCC). Primary ciliogenesis defects contribute to tumorigenesis, and OFD1 at centriolar satellites is a crucial suppressor of primary ciliogenesis. To identify novel markers associated with HPV-induced carcinogenesis, the interactions between HPV infection and primary ciliogenesis in the tumorigenesis and progression of OPSCC were investigated in this study. Patients and Methods The 1530 OPSCC patients recruited in this research were treated from 2000 to 2017. Immunohistochemistry and RT-PCR were performed on tissue samples to compare the expression of p16, TSLP, TGFβ1, IFNγ, OFD1, and their relationship with clinical characteristics of patients. Results We speculate that the positive expression of p16 is related to early primary OPSCC, and the survival rate of p16 positive patients after radiotherapy and surgery is higher. Expression of TSLP on dendritic cells in HPV-positive OPSCC correlated with the expression of OFD1. HPV-positive OPSCC showed increased expression of OFD1 combined with reduced ciliogenesis. Hence, TSLP induced by HPV infection may reduce the invasive potential of OPSCC cells by promoting OFD1 expression, thereby inhibiting primary ciliogenesis. Conclusion Our study demonstrated that HPV may be related to the progression of OPSCC by regulating OFD1 expression and primary ciliogenesis, making this protein a potential therapeutic target.
Collapse
Affiliation(s)
- Hong-Xue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.,Department of Pathology, Harbin Medical University, Harbin, People's Republic of China
| | - Xin-Xin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Rui-Qi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Hospital, Guangzhou, People's Republic of China
| | - Jun-Jie Bao
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yun-Jing Hou
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Ji Sun
- Department of Otolaryngology, Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Su-Sheng Miao
- Department of Otolaryngology, Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Guo-Fan Qu
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
9
|
Tripathi N, Keshari S, Shahi P, Maurya P, Bhattacharjee A, Gupta K, Talole S, Kumar M. Human papillomavirus elevated genetic biomarker signature by statistical algorithm. J Cell Physiol 2020; 235:9922-9932. [PMID: 32537823 DOI: 10.1002/jcp.29807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the one of the most frequently found cancers in the world. The aim of the study was to find the genes responsible and enriched pathways associated with HNSCC using bioinformatics and survival analysis methods. A total of 646 patients with HNSCC based on clinical information were considered for the study. HNSCC samples were grouped according to the parameters (RFS, DFS, PFS, or OS). The probe ID of these 11 genes was retrieved by Affymetrix using the NetAffx Query algorithm. The protein-protein interaction (PPI) network and Kaplan-Meier curve were used to find associations among the genes' expression data. We found that among these 11 genes, nine genes, CCNA1, MMP3, FLRT3, GJB6, ZFR2, PITX2, SYCP2, MEI1, and UGT8 were significant (p < .05). A survival plot was drawn between the p value and gene expression. This study helped us find the nine significant genes which play vital roles in HNSCC along with their key pathways and their interaction with other genes in the PPI network. Finally, we found the biomarker index for relapse time and risk factors for HNSCC in cancer patients.
Collapse
Affiliation(s)
- Nimisha Tripathi
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, India
| | - Sneha Keshari
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, India
| | - Pallavi Shahi
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, India
| | - Poonam Maurya
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi, India
| | - Atanu Bhattacharjee
- Section of Biostatistics, Centre for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India.,Homi Bhaba National Institute, Mumbai, India
| | - Kushal Gupta
- Section of Biostatistics, Centre for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Sanjay Talole
- Section of Biostatistics, Centre for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India.,Homi Bhaba National Institute, Mumbai, India
| | - Mukesh Kumar
- Department of Statistics, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells 2020; 9:cells9061359. [PMID: 32486347 PMCID: PMC7348958 DOI: 10.3390/cells9061359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of DNA methylation patterns is one of the hallmarks of cancer. Similar to other cancer types, human papillomavirus (HPV)-driven head and neck cancer (HNC) also reveals alterations in its methylation profile. The intrinsic ability of HPV oncoproteins E6 and E7 to interfere with DNA methyltransferase activity contributes to these methylation changes. There are many genes that have been reported to be differentially methylated in HPV-driven HNC. Some of these genes are involved in major cellular pathways, indicating that DNA methylation, at least in certain instances, may contribute to the development and progression of HPV-driven HNC. Furthermore, the HPV genome itself becomes a target of the cellular DNA methylation machinery. Some of these methylation changes appearing in the viral long control region (LCR) may contribute to uncontrolled oncoprotein expression, leading to carcinogenesis. Consistent with these observations, demethylation therapy appears to have significant effects on HPV-driven HNC. This review article comprehensively summarizes DNA methylation changes and their diagnostic and therapeutic indications in HPV-driven HNC.
Collapse
|