1
|
Gkotinakou IM, Kechagia E, Pazaitou-Panayiotou K, Mylonis I, Liakos P, Tsakalof A. Calcitriol Suppresses HIF-1 and HIF-2 Transcriptional Activity by Reducing HIF-1/2α Protein Levels via a VDR-Independent Mechanism. Cells 2020; 9:E2440. [PMID: 33182300 PMCID: PMC7695316 DOI: 10.3390/cells9112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible transcription factors 1 and 2 (HIFs) are major mediators of cancer development and progression and validated targets for cancer therapy. Although calcitriol, the biologically active metabolite of vitamin D, was attributed with anticancer properties, there is little information on the effect of calcitriol on HIFs and the mechanism underling this activity. Here, we demonstrate the negative effect of calcitriol on HIF-1/2α protein levels and HIF-1/2 transcriptional activity and elucidate the molecular mechanism of calcitriol action. We also reveal that the suppression of vitamin D receptor (VDR) expression by siRNA does not abrogate the negative regulation of HIF-1α and HIF-2α protein levels and HIF-1/2 transcriptional activity by calcitriol, thus testifying that the mechanism of these actions is VDR independent. At the same time, calcitriol significantly reduces the phosphorylation of Akt protein kinase and its downstream targets and suppresses HIF-1/2α protein synthesis by inhibiting HIF1A and EPAS1 (Endothelial PAS domain-containing protein 1) mRNA translation, without affecting their mRNA levels. On the basis of the acquired data, it can be proposed that calcitriol reduces HIF-1α and HIF-2α protein levels and inhibits HIF-1 and HIF-2 transcriptional activity by a VDR-independent, nongenomic mechanism that involves inhibition of PI3K/Akt signaling pathway and suppression of HIF1A and EPAS1 mRNA translation.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Eleni Kechagia
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | | | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| |
Collapse
|
2
|
Müller H, Schmiedl A, Weiss C, Ai M, Jung S, Renner M. DMBT1 is upregulated in lung epithelial cells after hypoxia and changes surfactant ultrastructure. Pediatr Pulmonol 2020; 55:2964-2969. [PMID: 32770804 DOI: 10.1002/ppul.25018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hypoxia and asphyxia are known to induce surfactant inactivation in newborns. Deleted in Malignant Brain Tumors 1 (DMBT1) is an innate immunity protein with functions in epithelial differentiation and angiogenesis. It was detected in hyaline membranes of infants with respiratory distress syndrome. Human recombinant DMBT1 is able to increase the surface tension of exogenous surfactant preparations in a dose-dependent manner. METHODS Immunohistochemistry was performed on lung sections of infants who died due to pre-, peri- or postnatal hypoxia. The lung epithelial cell line A549 was stably transfected with a DMBT1 (DMBT1+ cells) expression plasmid or with an empty plasmid (DMBT1- cells). The cells were cultured in normoxic or hypoxic conditions, and then DMBT1 as well as HIF-1α RNA expression were analyzed by using real-time-polymerase chain reaction. Human recombinant DMBT1 was added to the modified porcine natural surfactant Curosurf to examine the effect of DMBT1 on surfactant ultrastructure with electron microscopy. RESULTS DMBT1 expression was upregulated in human lung tissue after fetal/peri-/postnatal hypoxia. In addition, in vitro experiments showed increased DMBT1 RNA expression in A549 cells after hypoxia. HIF-1α was upregulated in both DMBT1+ and DMBT1- cells in response to hypoxia. The addition of human recombinant DMBT1 to Curosurf caused an impaired surfactant ultrastructure. CONCLUSIONS DMBT1 is upregulated in response to hypoxia and there seems to be a link between hypoxia and surfactant inactivation.
Collapse
Affiliation(s)
- Hanna Müller
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christel Weiss
- Department for Medical Statistics and Biomathematics, University Hospital Mannheim, Mannheim, Germany
| | - Maria Ai
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Susan Jung
- Department of Pediatrics, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int J Mol Sci 2020; 21:ijms21218002. [PMID: 33121202 PMCID: PMC7663714 DOI: 10.3390/ijms21218002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.
Collapse
|
4
|
Ren G, Hao X, Yang S, Chen J, Qiu G, Ang KP, Mohd Tamrin MI. 10H-3,6-Diazaphenothiazines triggered the mitochondrial-dependent and cell death receptor-dependent apoptosis pathways and further increased the chemosensitivity of MCF-7 breast cancer cells via inhibition of AKT1 pathways. J Biochem Mol Toxicol 2020; 34:e22544. [PMID: 32619082 DOI: 10.1002/jbt.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022]
Abstract
Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H-3,6-diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF-7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50 = 0.895 µM) toward MCF-7 cells. Further, cell cycle analysis illustrated that the S-phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF-10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria-dependent and cell death receptor-dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF-7 cells, thus suggesting its potential as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Guanghui Ren
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoyan Hao
- Department of Thyroid and Breast Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shuyi Yang
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jun Chen
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Guobin Qiu
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Kok Pian Ang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Islahuddin Mohd Tamrin
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Kandasamy G, Danilovtseva EN, Annenkov VV, Krishnan UM. Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:354-369. [PMID: 32190532 PMCID: PMC7061483 DOI: 10.3762/bjnano.11.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 05/08/2023]
Abstract
The present work explores the ability of poly(1-vinylimidazole) (PVI) to complex small interfering RNA (siRNA) silencing vascular endothelial growth factor (VEGF) and the in vitro efficiency of the formed complexes in A549 lung cancer cells. The polyplex formed was found to exhibit 66% complexation efficiency. The complexation was confirmed by gel retardation assays, FTIR and thermal analysis. The blank PVI polymer was not toxic to cells. The polyplex was found to exhibit excellent internalization and escaped the endosome effectively. The polyplex was more effective than free siRNA in silencing VEGF in lung cancer cells. The silencing of VEGF was quantified using Western blot and was also reflected in the depletion of HIF-1α levels in the cells treated with the polyplex. VEGF silencing by the polyplex was found to augment the cytotoxic effects of the chemotherapeutic agent 5-fluorouracil. Microarray analysis of the mRNA isolated from cells treated with free siRNA and the polyplex reveal that the VEGF silencing by the polyplex also altered the expression levels of several other genes that have been connected to the proliferation and invasion of lung cancer cells. These results indicate that the PVI complexes can be an effective agent to counter lung cancer.
Collapse
Affiliation(s)
- Gayathri Kandasamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| | - Elena N Danilovtseva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk, 664033, Russia
| | - Vadim V Annenkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk, 664033, Russia
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| |
Collapse
|
6
|
Bu T, Wang C, Jin H, Meng Q, Huo X, Sun H, Sun P, Wu J, Ma X, Liu Z, Liu K. Organic anion transporters and PI3K-AKT-mTOR pathway mediate the synergistic anticancer effect of pemetrexed and rhein. J Cell Physiol 2019; 235:3309-3319. [PMID: 31587272 DOI: 10.1002/jcp.29218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to explore whether rhein could enhance the effects of pemetrexed (PTX) on the therapy of non-small-cell lung cancer (NSCLC) and to clarify the associated molecular mechanism. Our study shows that rhein in combination with PTX could obviously increase the systemic exposure of PTX in rats, which would be mediated by the inhibition of organic anion transporters (OATs). Furthermore, the toxicity of PTX was significantly raised by rhein in A549 cells in a concentration-dependent manner. Concomitant administration of rhein and PTX-induced cell apoptosis compared with PTX alone in flow cytometry assays, which was further validated by the protein expressions of the apoptotic markers B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) and Cleaved-Caspase3 (Cl-Caspase3). Meanwhile, the results of monodansylcadaverine (MDC) dyeing experiments showed that PTX-induced autophagy could be enhanced by combination therapy with rhein in A549 cells. Western blot analysis indicated that the synergistic effect of rhein on PTX-mediated autophagy may be interrelated to PI3K-AKT-mTOR pathway inhibition and to the enhancement of p-AMPK and light chain 3-II (LC3-II) protein levels. From these findings, it could be surmised that rhein enhanced the antitumor activity of PTX through influencing autophagy and apoptosis by modulating the PI3K-AKT-mTOR pathway and Bcl-2 family of proteins in A549 cells. Our findings demonstrated that the potential application of rhein as a candidate drug in combination with PTX is promising for treatment of the human lung cancer.
Collapse
Affiliation(s)
- Tianci Bu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huan Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Ma Y, Xiu Z, Zhou Z, Huang B, Liu J, Wu X, Li S, Tang X. Cytochalasin H Inhibits Angiogenesis via the Suppression of HIF-1α Protein Accumulation and VEGF Expression through PI3K/AKT/P70S6K and ERK1/2 Signaling Pathways in Non-Small Cell Lung Cancer Cells. J Cancer 2019; 10:1997-2005. [PMID: 31205560 PMCID: PMC6548170 DOI: 10.7150/jca.29933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/10/2019] [Indexed: 02/07/2023] Open
Abstract
Our previous study has demonstrated that cytochalasin H (CyH) isolated from mangrove-derived endophytic fungus induces apoptosis and inhibits migration in A549 non-small cell lung cancer (NSCLC) cells. In this study, we further explored the effect of CyH on angiogenesis in NSCLC cells and the underlying molecular mechanisms. A549 and H460 NSCLC cells were treated with different concentrations of CyH for 24 h. The effects of CyH on NSCLC angiogenesis in vitro and in vivo were investigated. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in xenografted NSCLC of nude mice was analyzed by immunohistochemistry. ELISA was used to analyze the concentration of VEGF in the conditioned media derived from treated and untreated NSCLC cells. Western blot was performed to detect the levels of HIF-1α, p-AKT, p-P70S6K, and p-ERK1/2 proteins, and RT-qPCR was used to determine the levels of HIF-1α and VEGF mRNA in A549 and H460 cells. Our results showed that CyH significantly inhibited angiogenesis in vitro and in vivo, and suppressed the hemoglobin content and HIF-1α and VEGF protein expression in xenografted NSCLC tissues of nude mice. Meanwhile, CyH inhibited the secretion of VEGF protein and the expression of HIF-1α protein in A549 and H460 cells. Moreover, CyH had a significant inhibitory effect on VEGF mRNA expression but had no effect on HIF-1α mRNA expression, and CyH inhibited HIF-1α protein expression by promoting the degradation of HIF-1α protein in A549 and H460 cells. Additionally, CyH dramatically inhibited AKT, P70S6K, and ERK1/2 activation in A549 and H460 cells. Taken together, our results suggest that CyH can inhibit NSCLC angiogenesis by the suppression of HIF-1α protein accumulation and VEGF expression through PI3K/AKT/P70S6K and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Yuefan Ma
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zihan Xiu
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zhiyuan Zhou
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Bingyu Huang
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Jiao Liu
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xiaofeng Wu
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Sanzhong Li
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xudong Tang
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
8
|
华 欣, 朱 晓. [Research Advances of Ang-2 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:868-874. [PMID: 30454550 PMCID: PMC6247002 DOI: 10.3779/j.issn.1009-3419.2018.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with highest mortality in the world, it is still a difficult problem in clinical field. Its occurrence and development are closely associated with tumor angiogenesis. Angiopoietin-2 (Ang-2) is an important angiogenesis factor that has involved in many researches and it has been confirmed that the expression of Ang-2 is significantly up-regulated in tissues and blood of NSCLC. Meanwhile, Ang-2 is related to malignant biological behavior of cancer cells, making it a potential biological marker for the diagnosis and prognosis of NSCLC. At present, researches on Ang-2 how to promote the progression of NSCLC around the world are focused on Ang-2 regulating the proliferation, invasion, and metastasis of NSCLC. This paper summarized and estimated the studies and literature reports of regulatory mechanisms of Ang-2 in NSCLC, hopefully it could help looking for targeted drug treatment of Ang-2 in the future.
.
Collapse
Affiliation(s)
- 欣 华
- 210000 南京,东南大学医学院Medical College of Southeast University, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - 晓莉 朱
- 210000 南京,东南大学附属中大医院呼吸科Department of Respiration, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| |
Collapse
|
9
|
Li X, Li F, Ling L, Li C, Zhong Y. Intranasal administration of nerve growth factor promotes angiogenesis via activation of PI3K/Akt signaling following cerebral infarction in rats. Am J Transl Res 2018; 10:3481-3492. [PMID: 30662601 PMCID: PMC6291726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Angiogenesis plays a critical role in neural repair following ischemic stroke. Therapeutic angiogenesis contributes to neurological functional recovery after cerebral infarction. Nerve growth factor (NGF) has been reported as a neurotrophic factor. However, the angiogenic efficacy of NGF in cerebral ischemia remains unclear. In this study, we investigated the effect of NGF on angiogenesis in the ischemic penumbra and neurological outcome in a rat model of middle cerebral artery occlusion (MCAO). Our results demonstrate that the intranasal administration of NGF improves neurological outcome and reduces infarct volume on day 7 after MCAO in rats. Treatment with NGF promoted angiogenesis in the peri-infarct region, increased the serum levels of VEGF and SDF-1 protein, and elevated the number of circulating endothelial progenitor cells (EPCs) on day 4 after MCAO. In addition, NGF enhanced capillary-like tube formation of rat brain microvascular endothelial cells in vitro, further confirming its angiogenic effect. Furthermore, the neuroprotective and angiogenic effects of NGF can be significantly attenuated by the phosphatidylinositide 3-kinase (PI3K)/Akt pathway antagonist LY294002. Our results indicate that NGF-enhanced angiogenesis contributes to neurological functional recovery after ischemic stroke, which may occur partly via activation of the PI3K/Akt signaling pathway. This study provides novel experimental evidence for the angiogenic role of NGF in treating ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Neurology, Affiliated Xiaolan Hospital, Southern Medical University (Xiaolan People’s Hospital)Zhongshan, Guangdong, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical AcademyShenzhen, Guangdong, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical UniversityShenzhen, Guangdong, China
| | - Chuqiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Yulan Zhong
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, Guangdong, China
| |
Collapse
|