1
|
Guo Y, Miao S, Jin Y, Li Q, Wang Y, Zhang X, Li J. Tumor-associated macrophages contribute to cholangiocarcinoma progression and chemoresistance through activation of ID1. Ann Hepatol 2024; 30:101773. [PMID: 39674368 DOI: 10.1016/j.aohep.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION AND OBJECTIVES Tumor-associated macrophages (TAM) can influence both cancer growth and chemoresistance, but the specific mechanisms involved in these processes in cholangiocarcinoma (CCA) are unclear. MATERIALS AND METHODS We explored the distribution of TAM in CCA samples by multiplex immunofluorescence staining and tested the effects of TAM on CCA in vitro and in vivo. We then investigated the mechanisms underlying these effects using the Luminex assay, RNA sequencing, western blotting, flow cytometry, and co-immunoprecipitation. RESULTS The infiltration of TAM was strongly increased in the cholangiocarcinoma tumor microenvironment. Oncostain M (OSM) secreted by TAM increased the proliferation and chemotherapeutic resistance of CCA cells both in vitro and in vivo. The results of transcriptome sequencing analysis, Western blot analysis, and immunofluorescence staining confirmed that OSM can promote Yap nuclear translocation and its subsequent formation of complexes with SMADs to upregulate the expression of inhibitor of DNA binding 1 (ID1). CONCLUSIONS TAM promotes CCA progression and chemoresistance through activating OSM-Yap-ID1.
Collapse
Affiliation(s)
- Yinghao Guo
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Shuangda Miao
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qi Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yihang Wang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiaoxiao Zhang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jiangtao Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China.
| |
Collapse
|
2
|
Farladansky-Gershnabel S, Silber M, Biron-Shental T, Kovo M, Kidron D, Weisz A, Zitman-Gal T. Is the Transcription Factor NANOG Involved in Placental Aging? Am J Reprod Immunol 2024; 92:e13927. [PMID: 39302196 DOI: 10.1111/aji.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
PROBLEM Accelerated placental aging is linked to abnormal fetal growth, preeclampsia (PE), and preterm birth (PTB). NANOG, a transcription factor, is known for its role in cellular reprogramming, self-renewal, and clonogenic growth. Its expression is regulated by Kruppel-like factor 4 (KLF4), which functions as both a transcriptional activator and repressor. This study evaluated the KLF4-NANOG pathway in placental samples from normal pregnancies (NP) as well as those with PE, fetal growth restriction (FGR), and PTB. METHOD OF STUDY Placental samples from NP pregnancies and those with PE, FGR, and PTB were analyzed for NANOG and KLF4 expression using western blotting and immunohistochemistry. RESULTS NANOG protein expression was significantly increased in placentas from PE, FGR, and PTB compared to NP (fold changes vs. NP: PE 2.48 ± 0.3, p = 0.002; FGR 1.64 ± 0.16, p = 0.03; PTB 6.03 ± 3.35, p = 0.01). Similarly, KLF4 protein expression was elevated in PE, FGR, and PTB placentas compared to NP (fold changes vs. NP: PE 5.78 ± 0.73, p = 0.001; FGR 2.61 ± 0.43, p = 0.02; PTB 11.42 ± 2.76, p = 0.0006). Immunohistochemistry revealed strong NANOG staining in the syncytiotrophoblast tissue of PE, FGR, and PTB samples, especially in extravillous trophoblasts, compared to NP placentas. CONCLUSIONS The elevated expression of NANOG and KLF4 in abnormal placental tissues suggests their potential role as markers of enhanced placental aging and dysfunction. These findings underscore the importance of the KLF4-NANOG pathway in the pathology of PE, FGR, and PTB, providing a basis for future research into therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Sivan Farladansky-Gershnabel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Silber
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kovo
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Debora Kidron
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Tali Zitman-Gal
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
3
|
Li Z, Shu X, Liu X, Li Q, Hu Y, Jia B, Song M. Cellular and Molecular Mechanisms of Chemoresistance for Gastric Cancer. Int J Gen Med 2024; 17:3779-3788. [PMID: 39224691 PMCID: PMC11368108 DOI: 10.2147/ijgm.s473749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive tract, and chemotherapy plays an irreplaceable role in the comprehensive treatment of GC. However, chemoresistance makes it difficult for patients with GC to benefit steadily from chemotherapy in the long term, which ultimately leads to tumor recurrence, metastasis, and patient death. Elucidating the detailed mechanism of chemoresistance in GC and identifying specific therapeutic targets will help to solve the difficult problem of chemoresistance and improve the prognosis of patients with GC. This review summarizes and clarifies the cellular and molecular mechanisms underlying chemoresistance for GC.
Collapse
Affiliation(s)
- Zonglin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xingming Shu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xin Liu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiuyun Li
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yifu Hu
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bingbing Jia
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
4
|
Phadte P, Bishnu A, Dey P, M M, Mehrotra M, Singh P, Chakrabarty S, Majumdar R, Rekhi B, Patra M, De A, Ray P. Autophagy-mediated ID1 turnover dictates chemo-resistant fate in ovarian cancer stem cells. J Exp Clin Cancer Res 2024; 43:222. [PMID: 39123206 PMCID: PMC11316295 DOI: 10.1186/s13046-024-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Prerna Singh
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Shritama Chakrabarty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Rounak Majumdar
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
6
|
Hashemi M, Aparviz R, Beickzade M, Paskeh MDA, Kheirabad SK, Koohpar ZK, Moravej A, Dehghani H, Saebfar H, Zandieh MA, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Samarghandian S. Advances in RNAi therapies for gastric cancer: Targeting drug resistance and nanoscale delivery. Biomed Pharmacother 2023; 169:115927. [PMID: 38006616 DOI: 10.1016/j.biopha.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Gastric cancer poses a significant health challenge, and exploring innovative therapeutic strategies is imperative. RNA interference (RNAi) has employed as an important therapeutic strategy for diseases by selectively targeting key pathways involved in diseases pathogenesis. Small interfering RNA (siRNA), a potent RNAi tool, possesses the capability to silence genes and downregulate their expression. This review provides a comprehensive examination of the potential applications of small interfering RNA (siRNA) and short hairpin RNA (shRNA), supplemented by an in-depth analysis of nanoscale delivery systems, in the context of gastric cancer treatment. The potential of siRNA to markedly diminish the proliferation and invasion of gastric cancer cells through the modulation of critical molecular pathways, including PI3K, Akt, and EMT, is highlighted. Besides, siRNA demonstrates its efficacy in inducing chemosensitivity in gastric tumor cells, thus impeding tumor progression. However, the translational potential of unmodified siRNA faces challenges, particularly in vivo and during clinical trials. To address this, we underscore the pivotal role of nanostructures in facilitating the delivery of siRNA to gastric cancer cells, effectively suppressing their progression and enhancing gene silencing efficiency. These siRNA-loaded nanoparticles exhibit robust internalization into gastric cancer cells, showcasing their potential to significantly reduce tumor progression. The translation of these findings into clinical trials holds promise for advancing the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Aparviz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzie Beickzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Moravej
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
8
|
Zhang F, Hu K, Liu W, Quan B, Li M, Lu S, Chen R, Ren Z, Yin X. Oxaliplatin-Resistant Hepatocellular Carcinoma Drives Immune Evasion Through PD-L1 Up-Regulation and PMN-Singular Recruitment. Cell Mol Gastroenterol Hepatol 2023; 15:573-591. [PMID: 36513250 PMCID: PMC9868681 DOI: 10.1016/j.jcmgh.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Previously, we showed the inhibitor of differentiation or DNA binding 1 (ID1)/Myc signaling is highly expressed in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study sought to investigate the role of ID1/Myc signaling on immune evasion in oxaliplatin-resistant HCC. METHODS The oxaliplatin (OXA)-resistant HCC cell lines (Hepa 1-6-OXA, 97H-OXA, and 3B-OXA) were established and their oxaliplatin tolerance was confirmed in vitro and in vivo. The relationship between ID1/Myc and programmed death-ligand 1 (PD-L1) up-regulation and polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) accumulation was explored. The underlying mechanism in which ID1/Myc signaling regulated PD-L1 expression and PMN-MDSC accumulation was investigated in vitro and vivo. RESULTS Increased ID1/Myc expression was identified in oxaliplatin-resistant HCC and correlated with PD-L1 up-regulation and PMN-MDSC accumulation. The knockdown of Myc sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in a decrease of PMN-MDSCs and an increase of interferon-γ+ CD8+ T cells in a tumor microenvironment. Polymerase chain reaction array, enzyme-linked immunosorbent assay, and MDSC Transwell migration assay indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through chemokine (C-C motif) ligand 5 (CCL5). The dual luciferase reporter assay and chromatin immunoprecipitation assay indicated that Myc could directly increase the transcriptions of PD-L1 and CCL5. Furthermore, anti-PD-L1 antibody combined with CCL5 blockade showed significant antitumor effects in oxaliplatin-resistant HCC. CONCLUSIONS ID1/Myc signaling drives immune evasion in oxaliplatin-resistant HCC via PD-L1 up-regulation and PMN-MDSC recruitment. Blocking the ID1/Myc-induced immune tolerance represents a promising treatment target to conquer chemoresistance in HCC.
Collapse
Affiliation(s)
- Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Keshu Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenfeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenxin Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Modulation of Spheroid Forming Capacity and TRAIL Sensitivity by KLF4 and Nanog in Gastric Cancer Cells. Curr Issues Mol Biol 2022; 45:233-248. [PMID: 36661504 PMCID: PMC9857986 DOI: 10.3390/cimb45010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The expression of pluripotency factors, and their associations with clinicopathological parameters and drug response have been described in various cancers, including gastric cancer. This study investigated the association of pluripotency factor expression with the clinicopathological characteristics of gastric cancer patients, as well as changes in the expression of these factors upon the stem cell-enriching spheroid culture of gastric cancer cells, regulation of sphere-forming capacity, and response to cisplatin and TRAIL treatments by Nanog and KLF4. Nanog expression was significantly associated with the emergence of a new tumor and a worse prognosis in gastric cancer patients. The expression of the pluripotency factors varied among six gastric cancer cells. KLF4 and Nanog were expressed high in SNU-601, whereas SOX2 was expressed high in SNU-484. The expression of KLF4 and SOX2 was increased upon the spheroid culture of SNU-601 (KLF4/Nanog-high) and SNU-638 (KLF4/Nanog-low). The spheroid culture of them enhanced TRAIL-induced viability reduction, which was accompanied by the upregulation of death receptors, DR4 and DR5. Knockdown and overexpression of Nanog in SNU-601 and SNU-638, respectively, did not affect spheroid-forming capacity, however, its expression was inversely correlated with DR4/DR5 expression and TRAIL sensitivity. In contrast, KLF4 overexpression in SNU-638 increased spheroid formation, susceptibility to cisplatin and TRAIL treatments, and DR4/DR5 expression, while the opposite was found in KLF4-silenced SNU-601. KLF4 is supposed to play a critical role in DR4/DR5 expression and responses to TRAIL and cisplatin, whereas Nanog is only implicated in the former events only. Direct regulation of death receptor expression and TRAIL response by KLF4 and Nanog have not been well documented previously, and the regulatory mechanism behind the process remains to be elucidated.
Collapse
|
10
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
11
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Alemohammad H, Motafakkerazad R, Asadzadeh Z, Farsad N, Hemmat N, Najafzadeh B, Vasefifar P, Baradaran B. siRNA-mediated silencing of Nanog reduces stemness properties and increases the sensitivity of HepG2 cells to cisplatin. Gene 2022; 821:146333. [PMID: 35182674 DOI: 10.1016/j.gene.2022.146333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Apigenin Suppresses the Warburg Effect and Stem-like Properties in SOSP-9607 Cells by Inactivating the PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3983637. [PMID: 35310040 PMCID: PMC8926538 DOI: 10.1155/2022/3983637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor that commonly occurs in children and adolescents. Apigenin (4′,5,7-trihydroxyflavone) is one of the most researched phenolic compounds that exhibits antitumor effects in several cancers. The aim of the current study was to investigate the effect and underlying mechanisms of apigenin on OS. To address this, OS cells (SOSP-9607) were treated with different concentrations of apigenin. The proliferation, migration, invasion, stem-like properties, and Warburg effect of apigenin-treated OS cells were evaluated. Apigenin was found to suppress the proliferation of SOSP-9607 cells and inhibit epithelial-mesenchymal transition, as indicated by decreased number of migrated and invaded cells, decreased protein expression of vimentin, and increased protein expression of E-cadherin. Additionally, apigenin suppressed tumorsphere formation and reduced the proportion of SOSP-9607 cells with positive expression of the stem cell-related markers Nanog and OCT-4. Apigenin inhibited the Warburg effect in SOSP-9607 cells, as demonstrated by decreased glucose and lactic acid levels, increased citrate and ATP levels, and downregulation of GLUT1, HK1, and LDHA, which are metabolism-related enzymes related to the Warburg effect. Moreover, apigenin inhibited the phosphorylation of PI3K, Akt, and mTOR in SOSP-9607 cells. Collectively, these results indicate that apigenin suppresses the Warburg effect and stem-like properties in SOSP-9607 cells, which may be mediated by PI3K/Akt/mTOR signaling, thus, providing a novel strategy for OS treatment.
Collapse
|
14
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
15
|
Tripathi SK, Biswal BK. SOX9 promotes epidermal growth factor receptor-tyrosine kinase inhibitor resistance via targeting β-catenin and epithelial to mesenchymal transition in lung cancer. Life Sci 2021; 277:119608. [PMID: 33989664 DOI: 10.1016/j.lfs.2021.119608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
AIMS The first-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib, continues to be a primary treatment option for lung cancer patients. However, acquisition of resistance to gefitinib is a major obstacle in lung cancer treatment and its cause is poorly understood. The present study aimed to implicate the role of SOX9-β-catenin in developed resistance to gefitinib through epithelial to mesenchymal transition (EMT) in lung cancer in vitro and ex vivo. MAIN METHODS Expression effect of SOX9 on survivability of lung cancer patients was demonstrated through online available Kaplan-Meier Plotter data base. Then, cell viability assay, colony forming assay, cell migration and invasion assays, flow cytometry, drug efflux assay, qRT-PCR, and western blotting were conducted to confirmed the role of SOX9 in gefitinib resistance in lung cancer cells. Dual-luciferase assay established the regulatory relation between SOX9 and β-catenin. Multicellular spheroid assay further explored that down regulation of SOX9 could reverse gefitinib resistance ex vivo. KEY FINDINGS Kaplan-Meier method correlated the higher expression of SOX9 and β-catenin with poor overall survival of lung cancer patients. Upregulation of SOX9 was associated gefitinib resistance with increased cell proliferation, migration and invasion, single-cell colony-forming ability, reduced apoptosis, and gefitinib intake in lung cancer cells. Moreover, upregulated SOX9 promoted EMT via targeting β-catenin and knockdown of SOX9 reversed the resistance and EMT phenotype. Similarly, we found that multicellular spheroid of gefitinib resistant cells showed larger surface area with more dispersion and viability of cells, while SOX9 knockdown abolished these induced properties ex vivo. SIGNIFICANCE SOX9 expression could provide an innovative perspective as biomarker to understand the EGFR-TKIs resistance in lung cancer.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
16
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
17
|
Risk factors and molecular characterization of penile cancer: impact on prognosis and potential targets for systemic therapy. Curr Opin Urol 2020; 30:202-207. [PMID: 31895076 DOI: 10.1097/mou.0000000000000712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To provide a comprehensive summary of risk factors, molecular machinery as well as potential therapeutic targets with a particular focus on literature published in the last 2 years on prognosis and treatment of penile cancer (PeCa). RECENT FINDINGS E2F, LAMC2, MAML2, ID1 and IGFBP2 proteins were demonstrated to play a critical role for aggressive tumor behavior and might predict poor survival in PeCa. PD-L1 axis was confirmed as a promising pathway to serve as a therapeutic target. A number of genetic alterations were illuminated. In clinical testing, pan-HER tyrosine kinase inhibitor dacomitinib provided promising results in chemo-naïve and EGFR monoantibody nimotuzumab in chemotherapy-failed PeCa patients. SUMMARY Knowledge of prognosis-relevant altered molecular pathways in PeCa is expanding paving the way for identification of potential therapeutic targets. Multicenter clinical trials in the setting of centralized PeCa care are warranted to foster effective marker-based individualized treatment strategies.
Collapse
|
18
|
Chen J, Zhang F, Wang D, Yang Z, Liu S, Dong Z. Prognostic ability of DNA-binding protein inhibitor ID-1 expression in patients with oral squamous cell carcinoma. Oncol Lett 2020; 19:3917-3922. [PMID: 32382338 PMCID: PMC7202274 DOI: 10.3892/ol.2020.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA-binding protein inhibitor ID-1 (ID-1) plays a vital role in the development of cancer. In the present study, ID-1 expression in oral squamous cell carcinoma (OSCC), and its association with prognosis were investigated in 128 patients with OSCC, treated at the Qilu Hospital of Shandong University and followed up for an additional 10 years. Immunohistochemical analysis was performed to detect ID-1 expression, and the association between ID-1 expression and recurrence, and estimated disease-specific survival (DSS) time were subsequently analyzed using the Mann-Whitney U test and the Kaplan-Meier method, respectively. In addition, the log-rank test was implemented to compare the survival curves and multivariate Cox proportional hazards analysis was performed to assess the prognostic value of ID-1. The results demonstrated that ID-1 was highly expressed in the majority of OSCC tissues investigated, and ID-1 expression was significantly higher in cases with recurrence of local tumors and lymph node metastasis. Furthermore, higher ID-1 expression levels were associated with a shorter DSS time. Taken together, the results of the present study suggest that ID-1 may serve as an independent prognostic factor to predict DSS time in patients with OSCC.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zhongjun Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Cao Y, Wang X, Tang L, Li Y, Song X, Liu X, Li M, Chen F, Wan H. Engrailed-2 promotes a malignant phenotype of esophageal squamous cell carcinoma through upregulating the expression of pro-oncogenic genes. PeerJ 2020; 8:e8662. [PMID: 32117645 PMCID: PMC7036277 DOI: 10.7717/peerj.8662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Background A number of homeobox genes have been implicated in the development of various cancers. However, the role of engrailed 2 (EN2), a member of the homeobox gene superfamily, in esophageal squamous cell carcinoma (ESCC) remains unknown. Methods The expression of EN2 was examined using quantitative real-time PCR and immunohistochemistry. A stable cell line was established to express exogenous EN2 using a lentivirus system. The malignant phenotype was analyzed with proliferation, clonogenicity, wound-healing and invasion assays. The CRISPR/Cas9 system was adopted to deplete endogenous EN2. RNA profiling was performed using gene expression microarray. The ShRNA-mediated method was used to knock down the expression of SPARC. The structure-function relationship was determined using site-directed mutagenesis. Results EN2 is highly expressed in ESCC. The malignant phenotype of the ESCC cell line was amplified by an overexpression of EN2 but was attenuated by a disruption of EN2. RNA profiling analysis revealed that distinct sets of genes were modulated by the expression of EN2 in various ESCC cell lines and oncogenes were among these. EN2 greatly increased the expression of SPARC in Eca109. Site-directed mutagenesis revealed that the induction of SPARC was closely correlated with the protumor function of EN2. ShRNA-mediated knockdown of SPARC attenuated the malignant phenotype of EN2-infected cells. These data suggest that SPARC is crucial for mediating the protumor function of EN2. Discussion EN2 has an oncogenic function in ESCC that is mediated by upregulating the expression of pro-oncogenic genes downstream. EN2 may potentially act as a diagnostic marker or therapeutic target for ESCC treatment in the future.
Collapse
Affiliation(s)
- Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Liu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Zhao Z, Bo Z, Gong W, Guo Y. Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy. Int J Med Sci 2020; 17:995-1005. [PMID: 32410828 PMCID: PMC7211148 DOI: 10.7150/ijms.42805] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival. Id1 is a stem cell-like gene more than a classical oncogene. Id1 is overexpressed in numerous types of cancers and exerts its promotion effect to these tumors through different pathways. Briefly, Id1 was found significantly correlated with EMT-related proteins, K-Ras signaling, EGFR signaling, BMP signaling, PI3K/Akt signaling, WNT and SHH signaling, c-Myc signaling, STAT3 signaling, RK1/2 MAPK/Egr1 pathway and TGF-β pathway, etc. Id1 has potent effect on facilitating tumorous angiogenesis and metastasis. Moreover, high expression of Id1 plays a facilitating role in the development of drug resistance, including chemoresistance, radiation resistance and resistance to drugs targeting angiogenesis. However, controversial results were also obtained. Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhiyuan Bo
- The Second Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weiyi Gong
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Yong Guo
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
21
|
Sun Y, Lai X, Yu Y, Li J, Cao L, Lin W, Huang C, Liao J, Chen W, Li C, Yang C, Ying M, Chen Q, Ye Y. Inhibitor of DNA binding 1 (Id1) mediates stemness of colorectal cancer cells through the Id1-c-Myc-PLAC8 axis via the Wnt/β-catenin and Shh signaling pathways. Cancer Manag Res 2019; 11:6855-6869. [PMID: 31440083 PMCID: PMC6664424 DOI: 10.2147/cmar.s207167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/15/2019] [Indexed: 01/14/2023] Open
Abstract
Background Inhibitor of DNA binding 1 (Id1) is upregulated in multiple cancers, and Id1overexpression correlates with cancer aggressiveness and poor clinical outcomes in cancer patients. However, its roles in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) are still elusive. Purpose This study aimed to examine the role of Id1 on the mediation of CRC stemness and explore the underlying mechanisms. Methods Id1 and CD133 expression was detected by qPCR assay and immunohistochemistry (IHC) in normal mucosal and primary colorectal cancer (CRC) specimens. Id1 was stably knocked down (KD) in human CRC cell lines. Spheres forming assay and tumorigenic assay were performed to evaluate self-renewal capacity and tumor initiation. Expression of CSC- and EMT-related markers and TCF/LEF activity were assessed in HCT116 cells after Id1 KD. Results qPCR assay showed higher Id1 and CD133 expression in CRC specimens than in normal mucosal specimens (P<0.05). IHC detected high cytoplasmic Id1 expression in 35 CRC specimens (46.7%), and high CD133 expression in 22 CRC specimens (29.3%) and negative expression in 18 normal mucosal specimens. High Id1 expression positively correlated with poor differentiation (P=0.034), and CD133 expression correlated with T category in CRC patients (P=0.002). Spearman correlation analysis revealed a positive correlation between Id1 and CD133 expression in CRC patients (P<0.05). Id1 KD resulted in suppression of proliferation, cell-colony formation, self-renewal capability and CSC-like features in HCT116 cells, and impaired the tumor-initiating capability in CRC cells. In addition, Id1 maintained the stemness of CRC cells via the Id1-c-Myc-PLAC8 axis through activating the Wnt/β-catenin and Shh signaling pathways. Conclusions Id1 expression significantly correlates with CD133 expression in CRC patients, and Id1 KD impairs CSC-like capacity and reverses EMT traits, partially via the Wnt/β-catenin signaling. Id1 may be a promising therapeutic target against colon CSCs.
Collapse
Affiliation(s)
- Yanxia Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Xiaolan Lai
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yue Yu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Lei Cao
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Jinrong Liao
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Wei Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chao Li
- Department of Pathology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chunkang Yang
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Mingang Ying
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Qiang Chen
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| |
Collapse
|