1
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Arachidonic acid metabolism as a novel pathogenic factor in gastrointestinal cancers. Mol Cell Biochem 2024:10.1007/s11010-024-05057-2. [PMID: 38963615 DOI: 10.1007/s11010-024-05057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Gastrointestinal (GI) cancers are a major global health burden, representing 20% of all cancer diagnoses and 22.5% of global cancer-related deaths. Their aggressive nature and resistance to treatment pose a significant challenge, with late-stage survival rates below 15% at five years. Therefore, there is an urgent need to delve deeper into the mechanisms of gastrointestinal cancer progression and optimize treatment strategies. Increasing evidence highlights the active involvement of abnormal arachidonic acid (AA) metabolism in various cancers. AA is a fatty acid mainly metabolized into diverse bioactive compounds by three enzymes: cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. Abnormal AA metabolism and altered levels of its metabolites may play a pivotal role in the development of GI cancers. However, the underlying mechanisms remain unclear. This review highlights a unique perspective by focusing on the abnormal metabolism of AA and its involvement in GI cancers. We summarize the latest advancements in understanding AA metabolism in GI cancers, outlining changes in AA levels and their potential role in liver, colorectal, pancreatic, esophageal, gastric, and gallbladder cancers. Moreover, we also explore the potential of targeting abnormal AA metabolism for future therapies, considering the current need to explore AA metabolism in GI cancers and outlining promising avenues for further research. Ultimately, such investigations aim to improve treatment options for patients with GI cancers and pave the way for better cancer management in this area.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Huang CF, Huang JJ, Mi NN, Lin YY, He QS, Lu YW, Yue P, Bai B, Zhang JD, Zhang C, Cai T, Fu WK, Gao L, Li X, Yuan JQ, Meng WB. Associations between serum uric acid and hepatobiliary-pancreatic cancer: A cohort study. World J Gastroenterol 2020; 26:7061-7075. [PMID: 33311950 PMCID: PMC7701939 DOI: 10.3748/wjg.v26.i44.7061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Uric acid is the end product of purine metabolism. Previous studies have found that serum uric acid (SUA) levels are associated with the total cancer risk. However, due to the dual effect of uric acid on cancer, the relationship between the SUA levels and most specific-site cancer remains unclear.
AIM To investigate the associations between the SUA levels and incidence of hepatobiliary-pancreatic cancer.
METHODS In this prospective cohort study, 444462 participants free of cancer from the UK Biobank were included. The SUA levels were measured at baseline, and the incidence of hepatobiliary-pancreatic cancer was determined by contacting the cancer registry. The hazard ratios (HRs) and 95% confidence intervals (CIs) between the SUA levels and hepatobiliary-pancreatic cancer were investigated using multiple adjusted Cox regression models adjusted for potential confounders.
RESULTS In total, 920 participants developed liver, gallbladder, biliary tract or pancreatic cancer during a median of 6.6 yrs of follow-up. We found that the HR of pancreatic cancer in the highest SUA group was 1.77 (95%CI: 1.29-2.42) compared with that in the lowest group. After stratifying by gender, we further found that SUA was associated with an increased risk of pancreatic cancer only among the females (highest quartile vs lowest quartile HR 2.04, 95%CI: 1.35-3.08). Among the males, the SUA levels were positively associated with the gallbladder cancer risk (highest quartile vs lowest quartile HR 3.09, 95%CI: 1.28-7.46), but a U-shaped association with the liver cancer risk was observed (P-nonlinear = 0.03).
CONCLUSION SUA is likely to have gender-specific effects on hepatobiliary-pancreatic cancer. High SUA levels are a risk factor for pancreatic cancer in females and gallbladder cancer in males. A U-shaped association with the liver cancer risk was identified.
Collapse
Affiliation(s)
- Chong-Fei Huang
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Jun-Jun Huang
- Scientific Research and Planning Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ning-Ning Mi
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yan-Yan Lin
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Qiang-Sheng He
- Clinical Research Center and Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Ya-Wen Lu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Ping Yue
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Bing Bai
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Jin-Duo Zhang
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Chao Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Teng Cai
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Wen-Kang Fu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Long Gao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| | - Xun Li
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
- The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jin-Qiu Yuan
- Clinical Research Center and Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Wen-Bo Meng
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Special Minimally Invasive Surgery Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou 730000, Gansu Province, China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
4
|
Nemunaitis JM, Brown-Glabeman U, Soares H, Belmonte J, Liem B, Nir I, Phuoc V, Gullapalli RR. Gallbladder cancer: review of a rare orphan gastrointestinal cancer with a focus on populations of New Mexico. BMC Cancer 2018; 18:665. [PMID: 29914418 PMCID: PMC6006713 DOI: 10.1186/s12885-018-4575-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
Gallbladder cancer is a rare malignancy of the biliary tract with a poor prognosis, frequently presenting at an advanced stage. While rare in the United States overall, gallbladder cancer has an elevated incidence in geographically distinct locations of the globe including Chile, North India, Korea, Japan and the state of New Mexico in the United States. People with Native American ancestry have a much elevated incidence of gallbladder cancer compared to Hispanic and non-Hispanic white populations of New Mexico. Gallbladder cancer is also one of the few bi-gendered cancers with an elevated female incidence compared to men. Similar to other gastrointestinal cancers, gallbladder cancer etiology is likely multi-factorial involving a combination of genomic, immunological, and environmental factors. Understanding the interplay of these unique epidemiological factors is crucial in improving the prevention, early detection, and treatment of this lethal disease. Previous studies have failed to identify a distinct genomic mutational profile in gallbladder cancers, however, work to identify promising clinically actionable targets is this form of cancer is ongoing. Examples include, interest in the HER2/Neu signaling pathway and the recognition that chronic inflammation plays a crucial role in gallbladder cancer pathogenesis. In this review, we provide a comprehensive overview of gallbladder cancer epidemiology, risk factors, pathogenesis, and treatment with a specific focus on the rural and Native American populations of New Mexico. We conclude this review by discussing future research directions with the goal of improving clinical outcomes for patients of this lethal malignancy.
Collapse
Affiliation(s)
- Jacklyn M Nemunaitis
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ursa Brown-Glabeman
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Heloisa Soares
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessica Belmonte
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ben Liem
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Internal Medicine, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Itzhak Nir
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Surgery, Division of Surgical Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Victor Phuoc
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.,Department of Surgery, Division of Surgical Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rama R Gullapalli
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA. .,Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA. .,Department of Chemical and Biological Engineering, University of New Mexico, Room 333A, MSC08-4640, Albuquerque, NM, 87131, USA.
| |
Collapse
|
5
|
Chen G, Yuan C, Duan F, Liu Y, Zhang J, He Z, Huang H, He C, Wang H. IGF1/MAPK/ERK signaling pathway-mediated programming alterations of adrenal cortex cell proliferation by prenatal caffeine exposure in male offspring rats. Toxicol Appl Pharmacol 2018; 341:64-76. [PMID: 29343424 DOI: 10.1016/j.taap.2018.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/01/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Our previous study proposed a glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis programming mechanism for prenatal caffeine exposure (PCE)-induced adrenal developmental dysfunction. Here, we focused on PCE-induced cell proliferation changes of the adrenal cortex in male offspring rats before and after birth and clarified the intrauterine programming mechanism. On gestational day (GD) 20, the PCE group had an elevated serum corticosterone level reduced fetal bodyweight, maximum adrenal sectional area, and elevated adrenal corticosterone and aldosterone contents. However, in postnatal week (PW) 6, the serum corticosterone level was decreased, and the bodyweight, with catch-up growth, adrenal cortex maximum cross-sectional area and aldosterone content were relatively increased, while the adrenal corticosterone content was lower. On GD20, the expression of adrenal IGF1, IGF1R and proliferating cell nuclear antigen (PCNA) were decreased, while the expression of these factors at PW6 were increased in the PCE group. Fetal adrenal gene chip analysis suggested that the mitogen-activated protein kinase/extracellular regulated protein kinase (MAPK/ERK) signal pathway was suppressed in the PCE group. Moreover, in the rat primary adrenal cells, corticosterone (rather than caffeine) was shown to significantly inhibit cell proliferation, IGF1 and PCNA expression, and ERK phosphorylation, which could be reversed by exogenous IGF1. Meanwhile, the effects of exogenous IGF1 were reversed by the ERK pathway inhibitor (PD184161). In conclusion, PCE could induce programming alterations in adrenal cortical cell proliferation before and after birth in male offspring rats. The underlying mechanism is associated with the inhibition of fetal adrenal IGF1-related MAPK/ERK signaling pathway caused by high glucocorticoid levels.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Chao Yuan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Fangfang Duan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yanyan Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hegui Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Chunjiang He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|