1
|
Schnurr C, Buckett L, Bitenc J, Rychlik M. Quantification of mulberrin and morusin in mulberry and other food plants via stable isotope dilution analysis using LC-MS/MS. Food Chem 2025; 473:143061. [PMID: 39892347 DOI: 10.1016/j.foodchem.2025.143061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Mulberry (Morus) is an important food and medicinal plant primarily used in sericulture. It is rich in prenylated flavonoids like morusin and mulberrin, which have shown promising bioactivities in vitro and in vivo but so far rely on HPLC methods for their quantification in plant material. Hence, a more sensitive LC-MS/MS stable isotope dilution assay for morusin and mulberrin was developed and validated. The analytes were quantified in 17 plant samples, with up to three plant compartments investigated (branches, leaves, fruits). The highest amounts were found in branches of a German mulberry tree (43 μg/g morusin, 910 μg/g mulberrin). Limits of detection reached 0.02 μg/g for morusin and 0.06 μg/g for mulberrin, which is significantly lower than existing methods, allowing for the detection and quantification of the analytes in leaves and fruits of mulberry, as well as common snowball (Viburnum opulus), a common food and medicine plant.
Collapse
Affiliation(s)
- Christian Schnurr
- Technical University of Munich, Chair of Analytical Food Chemistry, Freising, Germany.
| | - Lance Buckett
- Helmholtz Munich, Research Unit Analytical Biogeochemistry, Oberschleißheim, Germany
| | - Jana Bitenc
- Technical University of Munich, Chair of Analytical Food Chemistry, Freising, Germany
| | - Michael Rychlik
- Technical University of Munich, Chair of Analytical Food Chemistry, Freising, Germany; The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Erdogan MK, Ozer G. Synergistic Anticancer Effects of Bleomycin and Hesperidin Combination on A549 Non-Small Cell Lung Cancer Cells: Antiproliferative, Apoptotic, Anti-Angiogenic, and Autophagic Insights. Pharmaceuticals (Basel) 2025; 18:254. [PMID: 40006067 PMCID: PMC11859711 DOI: 10.3390/ph18020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Background: This study investigated the combined effects of hesperidin (Hesp), a natural flavonoid, with bleomycin (BL), a commonly used chemotherapy agent, on A549 human lung cancer cells. Methods: Key parameters assessed included cell viability, colony formation, and cell migration, alongside the expression of apoptotic and autophagic markers (p53, p21, Bax, cleaved PARP, and Beclin-1), VEGF levels, and caspase-3 activity. Results: The findings revealed that the Hesp + BL combination significantly amplified antiproliferative, apoptotic, anti-angiogenic, and autophagic effects compared to either treatment alone. The combination therapy effectively inhibited colony formation and cell migration while markedly reducing VEGF levels, indicating strong anti-angiogenic properties. Apoptotic markers such as p53, p21, Bax, and cPARP were significantly upregulated, with caspase-3 activity confirming robust apoptosis induction. Furthermore, autophagy was notably enhanced, as reflected by increased Beclin-1 expression. Conclusions: Synergistic interactions between Hesp and BL, validated through combination index analysis, underscore the therapeutic potential of this combination. These findings underscore the therapeutic potential of the Hesp + BL combination as a promising strategy for lung cancer treatment, meriting further exploration in diverse lung cancer cell lines to validate and expand its applicability in developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Guleser Ozer
- Department of Biology, Science Institute, Bingol University, 12000 Bingol, Türkiye
| |
Collapse
|
3
|
Ji L, Chai Y, Tong C, Hu Y, Li J, Lu B, Yu J. Morusin Reverses Epithelial-Mesenchymal Transition in Gallbladder Cancer Cells by Regulating STAT3/HIF-1α Signaling. Chem Biol Drug Des 2025; 105:e70054. [PMID: 39825622 DOI: 10.1111/cbdd.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo. Through cell viability and colony formation assays, we observed that morusin inhibited the proliferation of gallbladder cancer cells in vitro. Wound healing and transwell assays revealed that morusin impeded the migration and invasion of gallbladder cancer cells. Given the observed morphological changes, we examined epithelial-mesenchymal transition (EMT) markers. Subsequent investigations demonstrated that morusin treatment, both in vitro and in vivo, downregulated the expression of phospho-STAT3 (Signal transducer and activator of transcription 3) and HIF-1α (Hypoxia-inducible factor 1α) in gallbladder cancer cells. Furthermore, morusin effectively reversed EMT induced by phospho-STAT3 or HIF-1α. Morusin has a reversing effect on the EMT of gallbladder cancer cells by modulating STAT3/HIF-1α signaling.
Collapse
Affiliation(s)
- Lichao Ji
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yingjie Chai
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- Department of General Surgery, Haining People's Hospital, Haining, People's Republic of China
| | - Chenhao Tong
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Yanxin Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Baochun Lu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
4
|
Kim EO, Park D, Ha IJ, Bae SE, Lee MY, Yun M, Kim K. The Secretion of Inflammatory Cytokines Triggered by TLR2 Through Calcium-Dependent and Calcium-Independent Pathways in Keratinocytes. Mediators Inflamm 2024; 2024:8892514. [PMID: 39588538 PMCID: PMC11588404 DOI: 10.1155/mi/8892514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Keratinocytes can be activated by Cutibacterium acnes, leading to the production of proinflammatory cytokines via toll-like receptors (TLRs) 2 and 4. Although several studies have investigated keratinocytes, the mechanism of calcium-mediated activation remains unclear. Herein, we investigated whether calcium influx via TLR2 and TLR4 stimulation was involved in cytokine secretion by keratinocytes in HaCaT cells. Although TLR2 stimulation by peptidoglycan (PGN) increased intracellular calcium influx, TLR4 stimulation by lipopolysaccharide (LPS) did not increase it, as analyzed using flow cytometry with the calcium indicator Fluo-3. However, activation by either TLR2 or TLR4 ligands upregulated the intracellular calcium influx in THP-1 monocytes. Additionally, the expression of major proinflammatory cytokines and chemokines, such as interleukin (IL)-6, IL-8, IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein-1 (MCP-1), was significantly increased by TLR2 in HaCaT cells. Moreover, treatment with the intracellular calcium chelator, BAPTA-AM, disrupted PGN-mediated induction of IL-6, IL-8, and MCP-1 production. Real-time quantitative polymerase chain reaction (PCR) and western blotting revealed that TLR2 stimulation induced expression of the epidermal differentiation marker keratin 1. In conclusion, TLR2-induced intracellular calcium influx plays a pivotal role in the secretion of proinflammatory cytokines, such as IL-6 and MCP-1, in keratinocytes. Moreover, the continuous influx of calcium via TLR2 activation leads to keratinization. In vitro studies using HaCaT cells provide basic research on the effect of TLR2-induced calcium on C. acnes-mediated inflammation in keratinocytes. These studies are limited in their ability to clinically predict what happens in human keratinocytes. Clinical studies on patients with acne, including three-dimensional (3D) cultures of primary keratinocytes, are required to develop new diagnostic markers for determining the severity of acne vulgaris.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Medical Science Research Center, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dain Park
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Se-Eun Bae
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Min Young Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Fadil SA, Albadawi DAI, Alshali KZ, Abdallah HM, Saber MM. Modulation of inflammatory mediators underlies the antitumor effect of the combination of morusin and docetaxel on prostate cancer cells. Biomed Pharmacother 2024; 180:117572. [PMID: 39426284 DOI: 10.1016/j.biopha.2024.117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Prostate cancer stands as a prominent contributor to male mortality in cancer cases. Docetaxel (Doc) is a commonly used treatment, but some patients do not respond well due to drug toxicity and resistance. Morusin, a prenylated flavonoid found in Morus alba, show strong anticancer properties. The aim of this study was to investigate the combined effect of morusin and docetaxel on prostate cancer cells, while exploring the underlying mechanisms. The IC50 values of morusin, docetaxel, and their combination on PC3 cells were evaluated using the sulforhodamine-B (SRB) assay. In addition, various markers including glutathione (GSH), malondialdehyde (MDA), inflammatory mediators (IL-6, TNF-α, NF-κB, and IL-10), NQO1, NRF2, and apoptotic markers (Bax and Bcl2) were evaluated. Co-administration of morusin and Doc significantly reduced Doc IC50 value, indicating enhanced cytotoxicity. The combination therapy affected inflammatory mediators by increasing IL-6 levels and reducing elevated TNF-α and NF-κB levels. Furthermore, the combination reduced GSH levels and augmented MDA, NQO1 and NRF2 levels, which have a crucial role in the cellular response to oxidative stress. Moreover, morusin enhanced apoptosis induced by Doc through increasing Bax levels and decreasing Bcl-2 expression. Molecular docking analyses confirmed morusins' activity against the target proteins studied. In conclusion, the combination of morusin and docetaxel showed enhanced efficacy at lower drug concentrations in treating prostate cancer. The combination therapy may reduce drug resistance by modulating inflammatory mediators and regulating antioxidant markers. The results of this study indicate the possibility of morusin in being a supplementary treatment option for prostate cancer.
Collapse
Affiliation(s)
- Sana A Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jedaah, 21589, Saudi Arabia
| | - Dina A I Albadawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Z Alshali
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Zhang L, Li W, Chen X, Cao D, You S, Shi F, Luo Z, Li H, Zeng X, Song Y, Li N, Akimoto Y, Rui G, Chen Y, Wu Z, Xu R. Morusin inhibits breast cancer-induced osteolysis by decreasing phosphatidylinositol 3-kinase (PI3K)-mTOR signalling. Chem Biol Interact 2024; 394:110968. [PMID: 38522564 DOI: 10.1016/j.cbi.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.
Collapse
Affiliation(s)
- Long Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Weibin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; The Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, The Cancer Centre and the Department of Breast-Thyroid Surgery, Xiang' an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohui Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dongmin Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, Guangdong, 528437, China
| | - Siyuan You
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fan Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengqiong Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hongyu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangchen Zeng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yabin Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Na Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | | | - Gang Rui
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuoxing Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ren Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; The Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, The Cancer Centre and the Department of Breast-Thyroid Surgery, Xiang' an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Wang Y, Ai Q, Gu M, Guan H, Yang W, Zhang M, Mao J, Lin Z, Liu Q, Liu J. Comprehensive overview of different medicinal parts from Morus alba L.: chemical compositions and pharmacological activities. Front Pharmacol 2024; 15:1364948. [PMID: 38694910 PMCID: PMC11061381 DOI: 10.3389/fphar.2024.1364948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Morus alba L., a common traditional Chinese medicine (TCM) with a centuries-old medicinal history, owned various medicinal parts like Mori folium, Mori ramulus, Mori cortex and Mori fructus. Different medical parts exhibit distinct modern pharmacological effects. Mori folium exhibited analgesic, anti-inflammatory, hypoglycemic action and lipid-regulation effects. Mori ramulus owned anti-bacterial, anti-asthmatic and diuretic activities. Mori cortex showed counteraction action of pain, inflammatory, bacterial, and platelet aggregation. Mori fructus could decompose fat, lower blood lipids and prevent vascular sclerosis. The main chemical components in Morus alba L. covered flavonoids, phenolic compounds, alkaloids, and amino acids. This article comprehensively analyzed the recent literature related to chemical components and pharmacological actions of M. alba L., summarizing 198 of ingredients and described the modern activities of different extracts and the bioactive constituents in the four parts from M. alba L. These results fully demonstrated the medicinal value of M. alba L., provided valuable references for further comprehensive development, and layed the foundation for the utilization of M. alba L.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qing Ai
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqin Yang
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
8
|
Zhang K, Hu X, Su J, Li D, Thakur A, Gujar V, Cui H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int J Mol Sci 2024; 25:999. [PMID: 38256073 PMCID: PMC10816499 DOI: 10.3390/ijms25020999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are a major global health challenge, with high mortality rates. This study investigated the anti-cancer activities of 30 monomers extracted from Morus alba L. (mulberry) against gastrointestinal cancers. Toxicological assessments revealed that most of the compounds, particularly immunotoxicity, exhibit some level of toxicity, but it is generally not life-threatening under normal conditions. Among these components, Sanggenol L, Sanggenon C, Kuwanon H, 3'-Geranyl-3-prenyl-5,7,2',4'-tetrahydroxyflavone, Morusinol, Mulberrin, Moracin P, Kuwanon E, and Kuwanon A demonstrate significant anti-cancer properties against various gastrointestinal cancers, including colon, pancreatic, and gastric cancers. The anti-cancer mechanism of these chemical components was explored in gastric cancer cells, revealing that they inhibit cell cycle and DNA replication-related gene expression, leading to the effective suppression of tumor cell growth. Additionally, they induced unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, potentially resulting in DNA damage, autophagy, and cell death. Moracin P, an active monomer characterized as a 2-arylbenzofuran, was found to induce ER stress and promote apoptosis in gastric cancer cells, confirming its potential to inhibit tumor cell growth in vitro and in vivo. These findings highlight the therapeutic potential of Morus alba L. monomers in gastrointestinal cancers, especially focusing on Moracin P as a potent inducer of ER stress and apoptosis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Okhlahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Liu W, Ji Y, Wang F, Li C, Shi S, Liu R, Li Q, Guo L, Liu Y, Cui H. Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition. BMC Cancer 2023; 23:602. [PMID: 37386395 DOI: 10.1186/s12885-023-11080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The discovery of new anti-melanoma drugs with low side effect is urgently required in the clinic. Recent studies showed that morusin, a flavonoid compound isolated from the root bark of Morus Alba, has the potential to treat multiple types of cancers, including breast cancer, gastric cancer, and prostate cancer. However, the anti-cancer effect of morusin on melanoma cells has not been investigated. METHODS We analyzed the effects of morusin on the proliferation, cell cycle, apoptosis, cell migration and invasion ability of melanoma cells A375 and MV3, and further explored the effects of morusin on tumor formation of melanoma cell. Finally, the effects of morusin on the proliferation, cycle, apoptosis, migration and invasion of A375 cells after knockdown of p53 were detected. RESULTS Morusin effectively inhibits the proliferation of melanoma cells and induces cell cycle arrest in the G2/M phase. Consistently, CyclinB1 and CDK1 that involved in the G2/M phase transition were down-regulated upon morusin treatment, which may be caused by the up-regulation of p53 and p21. In addition, morusin induces cell apoptosis and inhibits migration of melanoma cells, which correlated with the changes in the expression of the associated molecules including PARP, Caspase3, E-Cadherin and Vimentin. Moreover, morusin inhibits tumor growth in vivo with little side effect on the tumor-burden mice. Finally, p53 knockdown partially reversed morusin-mediated cell proliferation inhibition, cell cycle arrest, apoptosis, and metastasis. CONCLUSION Collectively, our study expanded the spectrum of the anti-cancer activity of morusin and guaranteed the clinical use of the drug for melanoma treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Chongyang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, Zi qiang Road 139, 050000, Shijiazhuang, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, 400715, Chongqing, P.R. China.
- Cancer Centre, Reproductive Medicine Centre, Medical Research Institute, Southwest University, Chongqing, China.
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Hafeez A, Khan Z, Armaghan M, Khan K, Sönmez Gürer E, Abdull Razis AF, Modu B, Almarhoon ZM, Setzer WN, Sharifi-Rad J. Exploring the therapeutic and anti-tumor properties of morusin: a review of recent advances. Front Mol Biosci 2023; 10:1168298. [PMID: 37228582 PMCID: PMC10203489 DOI: 10.3389/fmolb.2023.1168298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Morusin is a natural product that has been isolated from the bark of Morus alba, a species of mulberry tree. It belongs to the flavonoid family of chemicals, which is abundantly present in the plant world and is recognized for its wide range of biological activities. Morusin has a number of biological characteristics, including anti-inflammatory, anti-microbial, neuro-protective, and antioxidant capabilities. Morusin has exhibited anti-tumor properties in many different forms of cancer, including breast, prostate, gastric, hepatocarcinoma, glioblastoma, and pancreatic cancer. Potential of morusin as an alternative treatment method for resistant malignancies needs to be explored in animal models in order to move toward clinical trials. In the recent years several novel findings regarding the therapeutic potential of morusin have been made. This aim of this review is to provide an overview of the present understanding of morusin's beneficial effects on human health as well as provide a comprehensive and up-to-date discussion of morusin's anti-cancer properties with a special focus on in vitro and in vivo studies. This review will aid future research on the creation of polyphenolic medicines in the prenylflavone family, for the management and treatment of cancers.
Collapse
Affiliation(s)
- Amna Hafeez
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Armaghan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | |
Collapse
|
11
|
Wani MY, Ganie NA, Wani DM, Wani AW, Dar SQ, Khan AH, A Khan N, Manzar MS, Dehghani MH. The phenolic components extracted from mulberry fruits as bioactive compounds against cancer: A review. Phytother Res 2023; 37:1136-1152. [PMID: 36592613 DOI: 10.1002/ptr.7713] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 01/03/2023]
Abstract
In Asia, mulberry has long been used to treat various infectious and internal ailments as a traditional medication. The compounds found in it have the potential to improve human health. Because there is no approved and defined evaluation procedure, it has not been formally or scientifically recognized. As a result of these investigations, a new frontier in traditional Chinese medicine has opened up, with the possibility of modernization, for the interaction between active components of mulberry and their biological activities. These studies have used current biotechnological technologies. For ages, mulberry has been used as an herbal remedy in Asia to cure various diseases and internal disorders. It has a high concentration of bioactive chemicals that benefit human health. The most abundant phenolic components extracted from white mulberry leaves are flavonoids (Kuwanons, Moracinflavans, Moragrols, and Morkotins), phenolic acids, alkaloids, and so forth. Flavonoids, benzofurans, chalcones, and alkaloids have been discovered to have cytotoxic effects on human cancer cell lines. There is growing evidence that mulberry fruits can potentially prevent cancer and other aging-related disorders due to their high concentration of bioactive polyphenolic-rich compounds and macro and micronutrients. Anthocyanins are rapidly absorbed after eating, arriving in the plasmalemma within 15-50 min and entirely removed after 6-8 hr. Due to a lack of an approved and consistent technique for its examination, it has yet to be formally or scientifically recognized. The mulberry plant is commercially grown for silkworm rearing, and less attention is paid to its bioactive molecules, which have a lot of applications in human health. This review paper discusses the phenolic compounds of white mulberry and black mulberry in detail concerning their role in cancer prevention.
Collapse
Affiliation(s)
- Mohd Younus Wani
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, India
| | - N A Ganie
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, India
| | - D M Wani
- Division of Entomology, SKUAST-Kashmir, Shalimar, India
| | - Ab Waheed Wani
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, India
| | - S Q Dar
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, Jizan, Saudi Arabia
| | - Nadeem A Khan
- Civil Engineering Department, Mewat Engineering College, New Delhi, India
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Morusin Enhances Temozolomide Efficiency in GBM by Inducing Cytoplasmic Vacuolization and Endoplasmic Reticulum Stress. J Clin Med 2022; 11:jcm11133662. [PMID: 35806945 PMCID: PMC9267261 DOI: 10.3390/jcm11133662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with high risks of recurrence and mortality. Chemoradiotherapy resistance has been considered a major factor contributing to the extremely poor prognosis of GBM patients. Therefore, there is an urgent need to develop highly effective therapeutic agents. Here, we demonstrate the anti-tumor effect of morusin, a typical prenylated flavonoid, in GBM through in vivo and in vitro models. Morusin showed selective cytotoxicity toward GBM cell lines without harming normal human astrocytes when the concentration was less than 20 µM. Morusin treatment significantly induced apoptosis of GBM cells, accompanied by the activation of endoplasmic reticulum (ER) stress, and the appearance of cytoplasmic vacuolation and autophagosomes in cells. Then, we found the ER stress activation and cytotoxicity of morusin were rescued by ER stress inhibitor 4-PBA. Furthermore, morusin arrested cell cycle at the G1 phase and inhibited cell proliferation of GBM cells through the Akt–mTOR–p70S6K pathway. Dysregulation of ERs and cell cycle in morusin exposed GBM cells were confirmed by RNA-seq analysis. Finally, we demonstrated the combination of morusin and TMZ remarkably enhanced ER stress and displayed a synergistic effect in GBM cells, and suppressed tumor progression in an orthotopic xenograft model. In conclusion, these findings reveal the toxicity of morusin to GBM cells and its ability to enhance drug sensitivity to TMZ, suggesting the potential application value of morusin in the development of therapeutic strategies for human GBM.
Collapse
|
13
|
Cho AR, Park WY, Lee HJ, Sim DY, Im E, Park JE, Ahn CH, Shim BS, Kim SH. Antitumor Effect of Morusin via G1 Arrest and Antiglycolysis by AMPK Activation in Hepatocellular Cancer. Int J Mol Sci 2021; 22:10619. [PMID: 34638959 PMCID: PMC8508967 DOI: 10.3390/ijms221910619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bum-Sang Shim
- Molecular Cancer Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (A.-R.C.); (W.-Y.P.); (H.-J.L.); (D.-Y.S.); (E.I.); (J.-E.P.); (C.-H.A.)
| | - Sung-Hoon Kim
- Molecular Cancer Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (A.-R.C.); (W.-Y.P.); (H.-J.L.); (D.-Y.S.); (E.I.); (J.-E.P.); (C.-H.A.)
| |
Collapse
|
14
|
Panek-Krzyśko A, Stompor-Gorący M. The Pro-Health Benefits of Morusin Administration-An Update Review. Nutrients 2021; 13:3043. [PMID: 34578920 PMCID: PMC8470188 DOI: 10.3390/nu13093043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023] Open
Abstract
Prenylflavonoids are widespread in nature. Plants are valuable sources of natural polyphenolic compounds with isoprenyl groups, which include flavones, flavanones, chalcones and aurones. They can be found in flowers, bark and stems. One of the most important compounds found in the bark of white mulberry (Morus alba) is morusin, a prenylated flavone with interesting pro-health properties. The research carried out so far revealed that morusin has antioxidant, antitumor, anti-inflammatory and anti-allergic activity. Moreover, its neuroprotective and antihyperglycemic properties have also been confirmed. Morusin suppresses the growth of different types of tumors, including breast cancer, glioblastoma, pancreatic cancer, hepatocarcinoma, prostate cancer, and gastric cancer. It also inhibits the inflammatory response by suppressing COX activity and iNOS expression. Moreover, an antimicrobial effect against Gram-positive bacteria was observed after treatment with morusin. The objective of this review is to summarize the current knowledge about the positive effects of morusin on human health in order to facilitate future study on the development of plant polyphenolic drugs and nutraceutics in the group of prenylflavones.
Collapse
Affiliation(s)
| | - Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland;
| |
Collapse
|
15
|
Characterization of metabolism feature and potential pharmacological changes of morusin-a promising anti-tumor drug-by ultra-high-performance liquid chromatography coupled time-of-flight mass spectrometry and network pharmacology. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Huang CC, Wang PH, Lu YT, Yang JS, Yang SF, Ho YT, Lin CW, Hsin CH. Morusin Suppresses Cancer Cell Invasion and MMP-2 Expression through ERK Signaling in Human Nasopharyngeal Carcinoma. Molecules 2020; 25:molecules25204851. [PMID: 33096744 PMCID: PMC7587949 DOI: 10.3390/molecules25204851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
The most important cause of treatment failure of nasopharyngeal carcinoma (NPC) patients is metastasis, including regional lymph nodes or distant metastasis, resulting in a poor prognosis and challenges for treatment. In the present study, we investigated the in vitro anti- tumoral properties of morusin on human nasopharyngeal carcinoma HONE-1, NPC-39, and NPC-BM cells. Our study revealed that morusin suppressed the migration and invasion abilities of the three NPC cells. Gelatin zymography assay and Western blotting demonstrated that the enzyme activity and the level of matrix metalloproteinases-2 (MMP-2) protein were downregulated by the treatment of morusin. Mitogen-activated protein kinase proteins were examined to identify the signaling pathway, which showed that phosphorylation of ERK1/2 was inhibited after the treatment of morusin. In summary, our data showed that morusin inhibited the migration and invasion of NPC cells by suppressing the expression of MMP-2 by downregulating the ERK1/2 signaling pathway, suggesting that morusin may be a potential candidate for chemoprevention or adjuvant therapy of NPC.
Collapse
Affiliation(s)
- Cheng-Chen Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yen-Ting Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi 600, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (C.-W.L.); (C.-H.H.); Tel.: +886-4-2473-9595 (ext. 34253) (C.-W.L.)
| | - Chung-Han Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.H.); (P.-H.W.); (Y.-T.L.); (J.-S.Y.); (S.-F.Y.); (Y.-T.H.)
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence: (C.-W.L.); (C.-H.H.); Tel.: +886-4-2473-9595 (ext. 34253) (C.-W.L.)
| |
Collapse
|
17
|
Wang J, Liu X, Zheng H, Liu Q, Zhang H, Wang X, Shen T, Wang S, Ren D. Morusin induces apoptosis and autophagy via JNK, ERK and PI3K/Akt signaling in human lung carcinoma cells. Chem Biol Interact 2020; 331:109279. [PMID: 33035517 DOI: 10.1016/j.cbi.2020.109279] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Due to drug resistance and side effects, the development of novel therapeutics for the treatment of lung cancer is still in an urgent need. Morusin, a naturally occurring prenylated flavonoid isolated from the root bark of Morus alba, has been reported to be a promising candidate for cancer treatment including lung cancer. This study aimed to validate the anti-cancer effects of morusin in human non-small cell lung cancer (NSCLC) cell lines A549 and NCI-H292. The results indicated that morusin had growth inhibitory, pro-apoptotic and pro-autophagic effects on A549 and NCI-H292 cells. The induction of apoptosis was characterized by chromatin condensation and PARP cleavage. Mitochondrial membrane potential (MMP) loss, cytochrome c release, Bax/Bcl-2 dysregulation, and caspase-3 cleavage were also observed, indicating a mitochondria-dependent apoptosis was induced by morusin. A pro-autophagic effect was demonstrated by the increased level of LC3-Ⅱ and decreased level of SQSTM1/p62. Furthermore, morusin inhibited PI3K/Akt signaling and activated JNK, ERK pathways as indicated by the alteration in the ratio of phosphorylation level over total protein expression level. A PI3K/Akt inhibitor (LY294002), a JNK inhibitor (SP600125) and a MEK/ERK inhibitor (U0126) contributed to the determination that these pathways were involved in both apoptosis and autophagy induced by morusin. Moreover, morusin treatment strikingly enhanced intracellular ROS level, an ROS scavenger NAC blocked cell death and changes of Akt, JNK and ERK induced by morusin.
Collapse
Affiliation(s)
- Jinxia Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Xiaoqing Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Hao Zheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Qingying Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Huaran Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Xiaoning Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Tao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Shuqi Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China.
| |
Collapse
|
18
|
Choi DW, Cho SW, Lee SG, Choi CY. The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus. Int J Mol Sci 2020; 21:E6541. [PMID: 32906784 PMCID: PMC7554996 DOI: 10.3390/ijms21186541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022] Open
Abstract
The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul 02447, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| |
Collapse
|
19
|
Agarwal S, Mohamed MS, Mizuki T, Maekawa T, Sakthi Kumar D. Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy. J Mater Chem B 2020; 7:5896-5919. [PMID: 31423502 DOI: 10.1039/c9tb01131e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Malignant brain tumors remain a major cause of concern and mortality as successful treatment is hindered due to the poor transport and low penetration of chemotherapeutics across the blood-brain barrier (BBB). In this study, a nano formulation composed of chlorotoxin (CTX)-conjugated morusin loaded PLGA nanoparticles (PLGA-MOR-CTX) was devised against Glioblastoma Multiforme (GBM) and its anti-proliferative effects were evaluated in vitro. The synthesized nanoparticles were loaded with morusin, a naturally derived chemotherapeutic drug, and surface conjugated with CTX, a peptide derived from scorpion venom, highly specific for chloride channels (CIC-3) expressed in glioma tumor cells, as well as for matrix metalloproteinase (MMP-2), which is up regulated in the tumor microenvironment. Subsequently, the anti-cancer potential of the NPs was assessed in U87 and GI-1 (human glioblastoma) cells. Antiproliferative, cell apoptosis, and other cell-based assays demonstrated that the PLGA-MOR-CTX NPs resulted in enhanced inhibitory effects on U87 and GI-1 glioma cells. Prominent cytotoxicity parameters such as ROS generation, enhanced caspase activity, cytoskeletal destabilization, and inhibition of MMP-activity were observed in glioblastoma cells upon PLGA-MOR-CTX NP treatment. The cytocompatibility observed with normal human neuronal cells (HCN-1A) and the enhanced lethal effects in glioblastoma cells highlight the potential of PLGA-MOR-CTX nanoparticles as promising therapeutic nanocarriers towards GBM.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| | | | | | | | | |
Collapse
|
20
|
Park YJ, Choi DW, Cho SW, Han J, Yang S, Choi CY. Stress Granule Formation Attenuates RACK1-Mediated Apoptotic Cell Death Induced by Morusin. Int J Mol Sci 2020; 21:ijms21155360. [PMID: 32731602 PMCID: PMC7432505 DOI: 10.3390/ijms21155360] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022] Open
Abstract
Stress granules are membraneless organelles composed of numerous components including ribonucleoproteins. The stress granules are characterized by a dynamic complex assembly in response to various environmental stressors, which has been implicated in the coordinated regulation of diverse biological pathways, to exert a protective role against stress-induced cell death. Here, we show that stress granule formation is induced by morusin, a novel phytochemical displaying antitumor capacity through barely known mechanisms. Morusin-mediated induction of stress granules requires activation of protein kinase R (PKR) and subsequent eIF2α phosphorylation. Notably, genetic inactivation of stress granule formation mediated by G3BP1 knockout sensitized cancer cells to morusin treatment. This protective function against morusin-mediated cell death can be attributed at least in part to the sequestration of receptors for activated C kinase-1 (RACK1) within the stress granules, which reduces caspase-3 activation. Collectively, our study provides biochemical evidence for the role of stress granules in suppressing the antitumor capacity of morusin, proposing that morusin treatment, together with pharmacological inhibition of stress granules, could be an efficient strategy for targeting cancer.
Collapse
Affiliation(s)
- Ye-Jin Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
| | - Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea;
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea;
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
- Correspondence: ; Tel.: +82-31-290-7010; Fax: +82-31-290-7015
| |
Collapse
|
21
|
Abstract
Survivin is one of the most cancer-specific proteins overexpressed in almost all malignancies, but is nearly undetectable in most normal tissues in adults. Functionally, as a member of the inhibitor of apoptosis family, survivin has been shown to inhibit apoptosis and increase proliferation. The antiapoptotic function of survivin seems to be related to its ability to inhibit caspases directly or indirectly. Furthermore, the role of survivin in cell cycle division control is related to its role in the chromosomal passenger complex. Consistent with its determining role in these processes, survivin plays a crucial role in cancer progression and cancer cell resistance to anticancer drugs and ionizing radiation. On the basis of these findings, recently survivin has been investigated intensively as an ideal tumor biomarker. Thus, multiple molecular approaches such as use of the RNA interfering technique, antisense oligonucleotides, ribozyme, and small molecule inhibitors have been used to downregulate survivin regulation and inhibit its biological function consequently. In this review, all these approaches are explained and other compounds that induced apoptosis in different cell lines through survivin inhibition are also reported.
Collapse
|
22
|
Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:189-195. [DOI: 10.1016/j.joim.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
|
23
|
Park JY, Kang SE, Ahn KS, Um JY, Yang WM, Yun M, Lee SG. Inhibition of the PI3K-AKT-mTOR pathway suppresses the adipocyte-mediated proliferation and migration of breast cancer cells. J Cancer 2020; 11:2552-2559. [PMID: 32201525 PMCID: PMC7065999 DOI: 10.7150/jca.37975] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: Although it is well known that adipocyte significantly affects breast cancer progression, its mechanism has not been fully understood. Here, we analyzed the effect of adipocytes on breast cancer progression including cell proliferation and migration. Materials and Methods: We treated the conditioned media obtained from mouse 3T3-L1-derived or human adipose tissue-derived mesenchymal stem cells (hAMSC)-derived adipocytes to breast cancer cells, MCF-7 and MDA-MB-231. And then, cells viability and proliferation were analyzed using MTT assays and colony forming assays, respectively. Also mRNA expression of inflammatory cytokines and proteins expression in main signal pathway were analyzed by RT-qPCR and immunoblotting, respectively. Results: Adipocyte-derived conditioned media increased the proliferation and migration of MCF-7 and MDA-MB-231 cells while little effects in a human normal immortalized mammary epithelial cell line MCF10A. In addition, adipocyte-derived conditioned media induced phosphorylation of AKT and mTOR and upregulated the expression of target genes of the PI3K-AKT-mTOR pathway including IL6, IL1β, IL1α and TNFα in breast cancer cells. Furthermore, BEZ235 a dual inhibitor of PI3K and mTOR significantly decreased the adipocyte-mediated the proliferation and migration of breast cancer cells. Conclusion: Adipocyte-derived conditioned media enhance the proliferation and migration of breast cancer cells through the PI3K-AKT-mTOR pathway, supporting the importance of heterotypic interactions between breast cancer cells and adipocytes in the tumor microenvironment.
Collapse
Affiliation(s)
- Jae-Yeo Park
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Shi-Eun Kang
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Miyong Yun
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea.,Sejong Arctic Research Center, Sejong University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Bionanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Oh JH, Yun M, Park D, Ha IJ, Kim CK, Kim DW, Kim EO, Lee SG. Papaver nudicaule (Iceland poppy) alleviates lipopolysaccharide-induced inflammation through inactivating NF-κB and STAT3. Altern Ther Health Med 2019; 19:90. [PMID: 31036001 PMCID: PMC6489246 DOI: 10.1186/s12906-019-2497-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Papaver nudicaule belongs to the Papaveraceae family, which is planted as an annual herbaceous species generally for ornamental purpose. Papaver rhoeas in the same family has been reported to have various pharmacological activities such as antioxidant and analgesic effects. In contrast, little is known about the pharmacological activity of Papaver nudicaule. In this study, the anti-inflammatory activity of Papaver nudicaule extracts and the action mechanisms were investigated in RAW264.7 macrophage cells. METHODS To investigate the anti-inflammatory activity of five cultivars of Papaver nudicaule with different flower color, samples were collected from their aerial parts at two growth stages (60 and 90 days) and their ethanol extracts were evaluated in the lipopolysaccharide (LPS)-treated RAW264.7 cells by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) levels. Interleukin 1-beta (IL-1β), Interleukin-6 (IL-6) and Tumor necrosis factor alpha (TNF-α) production were also analyzed by RT-PCR and multiplex assays. Nuclear Factor-kappa-light-chain-enhancer of activated B cells (NF-κB) and Signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using western blotting and luciferase reporter assays to reveal the action mechanism of Papaver nudicaule extracts in their anti-inflammatory activity. RESULTS All of the Papaver nudicaule extracts were effective in reducing the LPS-induced NO, which is an important inflammatory mediator, and the extract of Papaver nudicaule with white flower collected at 90 days (NW90) was selected for further experiments because of the best effect on reducing the LPS-induced NO as well as no toxicity. NW90 lowered the LPS-induced PGE2 level and decreased the LPS-induced Nitric oxide synthase 2 (NOS2) and Cyclooxygenase 2 (COX2). In addition, NW90 reduced the LPS-induced inflammatory cytokines, IL-1β and IL-6. Furthermore, NW90 inhibited the LPS-induced activation of NF-κB and STAT3. CONCLUSIONS These results indicate that NW90 may restrain inflammation by inhibiting NF-κB and STAT3, suggesting the potential therapeutic properties of Papaver nudicaule against inflammatory disease.
Collapse
|
25
|
Ramezankhani B, Taha MF, Javeri A. Vitamin C counteracts miR-302/367-induced reprogramming of human breast cancer cells and restores their invasive and proliferative capacity. J Cell Physiol 2018; 234:2672-2682. [PMID: 30191953 DOI: 10.1002/jcp.27081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.
Collapse
Affiliation(s)
- Bahareh Ramezankhani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
26
|
Design and screening of syringic acid analogues as BAX activators-An in silico approach to discover “BH3 mimetics”. Comput Biol Chem 2018. [DOI: 10.1016/j.compbiolchem.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Dong HX, Wang R, Jin XY, Zeng J, Pan J. LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p. J Cell Physiol 2018; 233:4126-4136. [PMID: 29030962 DOI: 10.1002/jcp.26215] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) serve critical roles in the pathogenesis of various cancers, including lung adenocarcinoma (LUAD). Herein, in this study, we aimed to investigate the biological and clinical significance of lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) in LUAD. It was observed that DGCR5 was upregulated in LUAD tissues and LUAD cell lines. Inhibition of DGCR5 can prevent LUAD progression via playing anti-apoptosis roles. Both mRNA expression and protein levels of BCL-2 were increased by DGCR5 downregulation while reversely BAX was increased. Additionally, a novel microRNA target of DGCR5, hsa-mir-22-3p was identified through bioinformatics search and confirmed by dual-luciferase reporter system. Gain and loss-of-function studies were performed to verify whether DGCR5 exerts its biological functions through regulating hsa-mir-22-3p in vitro. Overexpression of DGCR5 was able to reverse the tumor inhibitory effect of hsa-mir-22-3p mimics. Furthermore, in vivo tests tumor xenografts were established to detect the function of DGCR5 in LUAD tumorigenesis. Downregulated DGCR5 expression was greatly associated with smaller tumor size, implying a favorable prognosis of LUAD patients. Taken these together, DGCR5 could be considered as a prognostic biomarker and therapeutic target in LUAD diagnosis and treatment.
Collapse
Affiliation(s)
- Hui-Xing Dong
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Wang
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yan Jin
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zeng
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Pan
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
UGT-mediated metabolism plays a dominant role in the pharmacokinetic behavior and the disposition of morusin in vivo and in vitro. J Pharm Biomed Anal 2018; 154:339-353. [PMID: 29571132 DOI: 10.1016/j.jpba.2018.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Morusin is a prenylated flavone isolated from mulberry, the branch and root bark of various Morus species, which possesses diverse pharmacological activities. However, it lacks extensive studies about its absorption and disposition. This study investigated the pharmacokinetic behavior of morusin in rat, and its first-pass metabolism in situ. The metabolic pathway of morusin was further investigated by 12 human recombinant UDP-glucuronosyltransferases (UGTs), 9 CYP450s, as well as liver and intestinal microsomes. Four mono-glucuronide metabolites (M-5-G, M-4'-G, M-2'-G, and MII-2) were identified in rat intestine and bile by LC-MS/MS, while three of them were also detected in plasma (M-5-G, M-4'-G, and MII-2). M-4'-G was the principal conjugate. However, few CYP450 metabolites were found in rat intestine and bile. Only a small amount of MI-1 could be detected in rat plasma. UGT1A1, 1A3, 1A7, and 2B7 were the major contributors to morusin glucuronidation. Morusin exhibited substrate inhibition kinetic characteristics in all UGTs. Clearance rates of M-4'-G in HLM, RLM, UGT1A1, UGT1A3, and UGT2B7 were 137.02, 127.55, 32.54, 41.18, and 35.07 ml/min/mg, respectively. Besides, CYP3A5, 3A4, and 2C19 primarily contributed to the oxidative metabolism of morusin. The pharmacokinetic curves of morusin and its conjugates presented double peaks, showing that an enterohepatic recycling may exist. In conclusion, glucuronidation was confirmed to be the crucial metabolic pathway for morusin in vivo, and M-4'-G was the main metabolite.
Collapse
|
29
|
Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, Liu P. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem Biol Interact 2018; 283:59-74. [PMID: 29421517 DOI: 10.1016/j.cbi.2018.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological cancers. Morusin, a prenylated flavonoid extracted from the root bark of Morus australis, has been reported to exhibit anti-tumor activity against various human cancers except EOC. In the present study, we explored the potential anti-cancer activity of morusin against EOC in vitro and in vivo and possible underlying mechanisms for the first time. We first found that morusin effectively inhibited EOC cell proliferation and survival in vitro and suppressed tumor growth in vivo. Then we observed that treatment of EOC cells with morusin resulted in paraptosis-like cell death, a novel mode of non-apoptotic programmed cell death that is characterized by extensive cytoplasmic vacuolation due to dilation of the endoplasmic reticulum (ER) and mitochondria and lack of apoptotic hallmarks. In addition, we discovered that morusin induced obvious increase in mitochondrial Ca2+ levels, accumulation of ER stress markers, generation of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (Δψm) in EOC cells. Furthermore, pretreatment with 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), a chemical inhibitor of voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane, effectively inhibited mitochondrial Ca2+ influx, cytoplasmic vacuolation and cell death induced by morusin in EOC cells. Moreover, DIDS pretreatment also suppressed morusin-induced accumulation of ER stress markers, ROS production and depletion of Δψm. Consistently, tumor xenograft assays showed that co-treatment with DIDS partially reversed the inhibitory effects of morusin on tumor growth in vivo and inhibited the increased levels of ER stress markers induced by morusin in tumor tissues. Collectively, our results suggest that VDAC-mediated Ca2+ influx into mitochondria and subsequent mitochondrial Ca2+ overload contribute to mitochondrial swelling and dysfunction, leading to morusin-induced paraptosis-like cell death in EOC. This study may provide alternative therapeutic strategies for EOC exhibiting resistance to apoptosis.
Collapse
Affiliation(s)
- Jing Xue
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Xinrui Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Congcong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Xin Lv
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
30
|
Agarwal S, Mohamed MS, Raveendran S, Rochani AK, Maekawa T, Kumar DS. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Adv 2018; 8:32621-32636. [PMID: 35547672 PMCID: PMC9086195 DOI: 10.1039/c8ra06362a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Morusin, a water-insoluble prenylated flavonoid is known for its numerous medicinal properties. It manifests its anticancer potential by suppression of genes involved in tumor progression. However, poor solubility of the drug results in low bioavailability and rapid degradation thus hindering its clinical utilization. In order to overcome this, we have synthesized a niosome system composed of non-ionic surfactant span 60 and cholesterol using a thin-layer evaporation technique to improve the aqueous-phase solubility of the drug. Highly cytocompatible niosomes of 479 nm average size with smooth and uniform spherical morphology were synthesized in a facile manner. Unlike free morusin, nanomorusin was found to be freely dispersible in aqueous media. Having an extremely high drug entrapment efficiency (97%), controlled and sustained release of morusin resulting in enhanced therapeutic efficacy was observed in cancer cell lines of 4 different lineages. The results demonstrate that the morusin-niosome system is a promising strategy for enhanced anti-cancer activity against multiple cancer types and could be an indispensable tool for future targeted chemotherapeutic strategies. Highly cytocompatible morusin-loaded niosomes were synthesized showing high drug loading and encapsulation efficiencies with sustained release of the drug. Enhanced therapeutic efficacy was observed against 4 different cancer cell lines.![]()
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| | - M. Sheikh Mohamed
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| | - Sreejith Raveendran
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton
- UK
| | - Ankit K. Rochani
- Jefferson College of Pharmacy
- Department of Pharmaceutical Science
- Thomas Jefferson University
- Philadelphia
- USA
| | - Toru Maekawa
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| | - D. Sakthi Kumar
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| |
Collapse
|
31
|
周 萍, 董 晓, 汤 平. [Sanggenon C induces apoptosis of prostate cancer PC3 cells by activating caspase 3 and caspase 9 pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1206-1210. [PMID: 28951363 PMCID: PMC6765487 DOI: 10.3969/j.issn.1673-4254.2017.09.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effects of Sanggenon C in inducing apoptosis of prostate cancer PC3 cell line and explore the underlying mechanism. METHODS The proliferation of PC3 cells treated for 24 h with 1, 5, 20, 50, and 100 µmol/L sanggenon C or treated with 20 µmol/L Sanggenon C for 0, 6, 12, 24 and 48 h was evaluated using MTT assay. Flow cytometry was performed for analysis of apoptosis of PC3 cells after exposure to sanggenon C with different treatment protocols, and the activity of caspase 3 was detected using spectrofluorometry. The inhibitory effect of sanggenon C on PC3 cells pretreated with DMSO, z-DEVD-fmk, z-LEHD-fmk or z-IETD-fmk for 1 h was detected by MTT assay. RESULTS Sanggenon C inhibited the proliferation of PC3 cells in a dose- and time-dependent manner (P<0.05 except for 1 µmol/L group) with a 24-h IC50 of 18.76 µmol/L. Sanggenon C at 20 µmol/L caused inhibition rates of PC3 cells of 10.57%, 27.09%, 51.88%, 80.73% and 87.99% after treatment for 6, 12, 24, 48, and 72 h, respectively (P<0.05), and resulted in apoptosis rates of 7.43%, 20.91% and 37.56% at 12 h, 24 h and 48 h, respectively. Sanggenon C significantly increased caspase-3 activity in the cells, and its effect on PC3 cell proliferation was partially reversed by caspase 3 and caspase 9 inhibitors. CONCLUSION Sanggenon C can dose-dependently induce growth inhibition and apoptosis of PC3 cells possibly by activating caspase 9 and caspase 3 pathways.
Collapse
Affiliation(s)
- 萍 周
- 广州医科大学 基础医学研究中心,广东 广州 511436Basic Medical Research Center, Guangzhou Medical University, Guangzhou 511436
| | - 晓先 董
- 广州医科大学 病理生理学教研室,广东 广州 511436Department of Pathophysiology, Guangzhou Medical University, Guangzhou 511436, China
| | - 平 汤
- 广州市第一人民医院泌尿外科,广东 广州 510180Department of Urology, Guangzhou First People's Hospital, Guangzhou 510180, China
| |
Collapse
|
32
|
周 萍, 董 晓, 汤 平. [Sanggenon C induces apoptosis of prostate cancer PC3 cells by activating caspase 3 and caspase 9 pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1206-1210. [PMID: 28951363 PMCID: PMC6765487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To investigate the effects of Sanggenon C in inducing apoptosis of prostate cancer PC3 cell line and explore the underlying mechanism. METHODS The proliferation of PC3 cells treated for 24 h with 1, 5, 20, 50, and 100 µmol/L sanggenon C or treated with 20 µmol/L Sanggenon C for 0, 6, 12, 24 and 48 h was evaluated using MTT assay. Flow cytometry was performed for analysis of apoptosis of PC3 cells after exposure to sanggenon C with different treatment protocols, and the activity of caspase 3 was detected using spectrofluorometry. The inhibitory effect of sanggenon C on PC3 cells pretreated with DMSO, z-DEVD-fmk, z-LEHD-fmk or z-IETD-fmk for 1 h was detected by MTT assay. RESULTS Sanggenon C inhibited the proliferation of PC3 cells in a dose- and time-dependent manner (P<0.05 except for 1 µmol/L group) with a 24-h IC50 of 18.76 µmol/L. Sanggenon C at 20 µmol/L caused inhibition rates of PC3 cells of 10.57%, 27.09%, 51.88%, 80.73% and 87.99% after treatment for 6, 12, 24, 48, and 72 h, respectively (P<0.05), and resulted in apoptosis rates of 7.43%, 20.91% and 37.56% at 12 h, 24 h and 48 h, respectively. Sanggenon C significantly increased caspase-3 activity in the cells, and its effect on PC3 cell proliferation was partially reversed by caspase 3 and caspase 9 inhibitors. CONCLUSION Sanggenon C can dose-dependently induce growth inhibition and apoptosis of PC3 cells possibly by activating caspase 9 and caspase 3 pathways.
Collapse
Affiliation(s)
- 萍 周
- 广州医科大学 基础医学研究中心,广东 广州 511436Basic Medical Research Center, Guangzhou Medical University, Guangzhou 511436
| | - 晓先 董
- 广州医科大学 病理生理学教研室,广东 广州 511436Department of Pathophysiology, Guangzhou Medical University, Guangzhou 511436, China
| | - 平 汤
- 广州市第一人民医院泌尿外科,广东 广州 510180Department of Urology, Guangzhou First People's Hospital, Guangzhou 510180, China
| |
Collapse
|