1
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Tohidast M, Memari N, Amini M, Hosseini SS, Jebelli A, Doustvandi MA, Baradaran B, Mokhtarzadeh A. MiR-145 inhibits cell migration and increases paclitaxel chemosensitivity in prostate cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1350-1359. [PMID: 37886001 PMCID: PMC10598815 DOI: 10.22038/ijbms.2023.70878.15397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/09/2023] [Indexed: 10/28/2023]
Abstract
Objectives Prostate cancer (PC) is one of the most commonly diagnosed malignancies among men worldwide. Paclitaxel is a chemotherapeutic agent widely used to treat different types of cancer. Recent studies revealed miRNAs control various genes that influence the regulation of many biological and pathological processes such as the formation and development of cancer, chemotherapy resistance, etc. Materials and Methods Between three PC cell lines (PC3, DU-145, LNCAP), PC3 showed the lowest miR-145 expression and was chosen for experiments. PC3 cells were treated with paclitaxel and miR-145 separately or in combination. To measure the cell viability, migratory capacity, autophagy, cell cycle progression, and apoptosis induction, the MTT assay, wound-healing assay, and Annexin V/PI apoptosis assay were used, respectively. Moreover, quantitative real-time PCR (qRT-PCR) was employed to measure the expression level of genes involved in apoptosis, migration, and stemness properties. Results Obtained results illustrated that miR-145 transfection could enhance the sensitivity of PC3 cells to paclitaxel and increase paclitaxel-induced apoptosis by modulating the expression of related genes, including Caspase-3, Caspase-9, Bax, and Bcl-2. Also, results showed combination therapy increased cell cycle arrest at the sub-G1 phase. miR-145 and paclitaxel cooperatively reduced migration ability and related-metastatic and stemness gene expression, including MMP-2, MMP-9, CD44, and SOX-2. In addition, combination therapy can suppress MDR1 expression. Conclusion These results confirmed that miR-145 combined with paclitaxel cooperatively could inhibit cell proliferation and migration and increase the chemosensitivity of PC3 cells compared to mono treatment. So, miR-145 combination therapy may be used as a promising approach for PC treatment.
Collapse
Affiliation(s)
- Maryam Tohidast
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- These authors contributed eqully to this work
| | - Neda Memari
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- These authors contributed eqully to this work
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Li L, Liu J, Huang W. E2F5 promotes proliferation and invasion of gastric cancer through directly upregulating UBE2T transcription. Dig Liver Dis 2022; 54:937-945. [PMID: 34583905 DOI: 10.1016/j.dld.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
The underlying mechanisms of E2F5 upregulation and its pro-tumor functions have not been elucidated in gastric cancer (GC). Here, the expression, prognostic value, mutation status, and promoter methylation of E2F5 were evaluated. The effects of E2F5 depletion on cell proliferation and invasion in GC, were also assessed through in vitro experiments. Additionally, gene set enrichment analysis (GSEA) was applied to analyze the potential downstream regulator of E2F5. The study also assessed the correlation and transcription regulation between E2F5 and UBE2T. Finally, the roles of UBE2T in E2F5-related pro-tumor functions were examined. The findings revealed that E2F5 was upregulated and showed remarkable association with pathological variables and prognosis. Hypomethylation of the E2F5 promoter predicted poor prognosis and partially caused E2F5 upregulation in GC. E2F5 knockdown significantly inhibited the proliferation and invasion of GC cells. E2F5 had a significant positive correlation with UBE2T in GC. Mechanistically, E2F5 promoted UBE2T transcription and UBE2T overexpression reversed the effects of E2F5 depletion on the proliferation and invasion of cells in GC. Taken together, this study originally confirmed the upregulation of E2F5 in GC, revealed that E2F5 can directly upregulate UBE2T transcription, and subsequently promote the malignant progression, which highlights that the E2F5/UBE2T axis can potentially be used in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Lina Li
- Department of pathology, Heping hospital, Changzhi Medical College, Changzhi 046000, China
| | - Jie Liu
- Department of pathology, Changsha Central Hospital, Changsha 410004, China
| | - Wei Huang
- Department of Oncology, Xiangya Hospital, Central South University (CSU), Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy (RCCT), Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
4
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Cansaran-Duman D, Yangın S, Çolak B. The role of vulpinic acid as a natural compound in the regulation of breast cancer-associated miRNAs. Biol Res 2021; 54:37. [PMID: 34743742 PMCID: PMC8574026 DOI: 10.1186/s40659-021-00360-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer is the most frequently diagnosed cancer, and no effective treatment solution has yet been found. The number of studies based on the research of novel natural compounds in the treatment of breast cancer has been increasing in recent years. The anticancer properties of natural compounds are related to the regulation of microRNA (miRNA) expression. Therefore, changing the profile of miRNAs with the use of natural products is very important in cancer treatment. However, the role of vulpinic acid and related miRNAs in breast cancer progression remains unknown. Vulpinic acid, methyl (as2E)-2-(3-hydroxy-5-oxo-4-phenylfuran-2-ylidene)-2 phenylacetate, is a natural product extracted from the lichen species and shows an anticancer effect on different cancer cells. Methods This study examines the effects of vulpinic acid on the miRNA levels of breast cancer (MCF-7) cells and its relationship with cell proliferation and apoptosis levels. The antiproliferative effect of vulpinic acid was screened against MCF-7 breast cancer cells and MCF-12A breast epithelial cells using the xCELLigence real-time cell analysis system. We analyzed the altered miRNA expression profile in MCF-7 breast cancer cells versus MCF-12A cells following their response to vulpinic acid through microarray analysis. The microarray analysis results were confirmed through quantitative real-time PCR and bioinformatics analysis. Results The results of the miRNA array and bioinformatic analyses demonstrated that 12 miRNAs were specifically responsive to vulpinic acid in MCF-7 breast cancer cells. This is the first study to reveal that vulpinic acid inhibits the expression of 12 miRNAs and suppresses breast cancer cell proliferation. The study also revealed that vulpinic acid may downregulate the expression of 12 miRNAs by repressing the FOXO-3 gene. The miRNA targets were mainly found to play a role in the apoptosis, cell cycle and MAPK pathways. Moreover, Bcl-2, Bax, procaspase-3 and procaspase-9 protein levels were assessed by western blot analysis for validation of apoptosis at the protein level. Conclusion This study revealed the molecular mechanisms of vulpinic acid on breast cancer and showed that vulpinic acid regulates apoptosis signaling pathways by decreasing the expression of miRNAs. The miRNA expression patterns illuminate the underlying effect of vulpinic acid in breast cancer treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00360-4.
Collapse
Affiliation(s)
| | - Sevcan Yangın
- Ankara University, Biotechnology Institute, Keçiören, Ankara, 06135, Turkey
| | - Betül Çolak
- Ankara University, Biotechnology Institute, Keçiören, Ankara, 06135, Turkey
| |
Collapse
|
6
|
Li S, Yang X, Li W, Chen Z. Comprehensive Analysis of E2F Family Members in Human Gastric Cancer. Front Oncol 2021; 11:625257. [PMID: 34532281 PMCID: PMC8438234 DOI: 10.3389/fonc.2021.625257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer (GC) is the second most common cancer and the third most frequent cause of cancer-related deaths in China. E2Fs are a family of transcription factors reported to be involved in the tumor progression of various cancer types; however, the roles of individual E2Fs are still not known exactly in tumor progression of GC. In this study, we examined the expression of E2Fs to investigate their roles in tumor progression in GC patients using multiple databases, including ONCOMINE, GEPIA2, Kaplan-Meier plotter, cBioPortal, Metascape, LinkedOmics, GeneMANIA, STRING and UCSC Xena. We also performed real-time polymerase chain reaction (RT-PCR) to validate the expression levels of individual E2Fs in several GC cell lines. Our results demonstrated that the mRNA levels of E2F1/2/3/5/8 were significantly higher both in GC tissues and cell lines. The expression levels of E2F1 and E2F4 were correlated with poor overall survival (OS), decreased post-progression survival (PPS), and decreased progression-free survival (FP) in patients with GC. However, overexpression of E2F2, E2F5, E2F7 and E2F8 is significantly associated with disease-free survival and overall survival in patients with GC. In addition, higher E2F3 and E2F6 mRNA expression was found to increase GC patients' OS and PPS. 224 of 415 patients with STAD (54%) had gene mutations that were associated with longer disease-free survival (DFS) but not OS. Cell cycle pathway was closely associated with mRNA level of more than half of E2Fs (E2F1/2/3/7/8). There were close and complicated interactions among E2F family members. Finally, our results indicated the gene expressions of E2Fs had a positive relationship with its copy numbers. Taken together, E2F1/2/3/5/8 can serve as biomarkers for GC patients with high prognostic value for OS of GC patients or therapeutic targets for GC.
Collapse
Affiliation(s)
- Shengbo Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
8
|
Tian T, Yang Q, Zhang C, Li X, Cheng J. MiRNA-107 enhances the malignant progression of pancreatic cancer by targeting TGFBR3. PLoS One 2021; 16:e0249375. [PMID: 34010341 PMCID: PMC8133469 DOI: 10.1371/journal.pone.0249375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 01/14/2023] Open
Abstract
Background The prognosis of pancreatic cancer (PC) is relatively dismal due to the lack of effective therapy. In this study, we explored the specific functions and molecular mechanisms of miR-107 to uncover effective therapeutic targets for PC. Method The miR-107 expression in PC cell lines was assessed via quantitative real-time polymerase chain reaction (qRT-PCR). Besides, online bioinformatics analysis was adopted to predict the underlying targets of miR-107. Meanwhile, TCGA database was employed to explore the prognosis of PC patients. In addition, MTT and transwell assays were conducted to explore the PC cells’ biological functions. Result MiR-107 was remarkably increased in PC cells which could promote the proliferation, invasion and migration of PC cells. In addition, miR-107 could directly down-regulate TGFBR3 expression through binding to TGFBR3 3’UTR. Survival analysis from TCGA suggested that PC patients with higher miR-107 expression was significantly involved in poorer prognosis. Conclusion We concluded that miR-107 promoted proliferation, invasion and migration of PC cells via targeting TGFBR3, which may provide novel underlying therapeutic targets.
Collapse
Affiliation(s)
- Tingke Tian
- Department of Basic Medicine in Puyang Medical College, Puyang City, Henan Province, China
| | - Quanzhong Yang
- Sanquan College of Xinxiang Medical College Basic Medical College, Xinxiang City, Henan Province, China
| | - Cuijuan Zhang
- Department of Basic Medicine in Puyang Medical College, Puyang City, Henan Province, China
| | - Xiaokun Li
- Department of Basic Medicine in Puyang Medical College, Puyang City, Henan Province, China
| | - Jiancheng Cheng
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
9
|
Karmakar D, Maity J, Mondal P, Shyam Chowdhury P, Sikdar N, Karmakar P, Das C, Sengupta S. E2F5 promotes prostate cancer cell migration and invasion through regulation of TFPI2, MMP-2 and MMP-9. Carcinogenesis 2021; 41:1767-1780. [PMID: 32386317 DOI: 10.1093/carcin/bgaa043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, our laboratory demonstrated that a deregulated E2F5/p38/SMAD3 axis was associated with uncontrolled cellular proliferation in prostate cancer (PCa). Here, we investigate the role of E2F5 in PCa in further details. RNAi-mediated E2F5 knockdown and pathway-focused gene expression profiling in PC3 cells identified TFPI2 as a downstream target of E2F5. Manipulation of E2F5 expression was also found to alter MMP-2 and MMP-9 levels as detected by Proteome Profiler array, western blot and reverse transcription coupled quantitative polymerase chain reaction Site-directed mutagenesis, dual-luciferase assays and chromatin immunoprecipitation with anti-E2F5-IgG coupled with qPCR confirmed recruitment of E2F5 on TFPI2, MMP-2 and MMP-9 promoters. RNAi-mediated knockdown of E2F5 expression in PC3 caused a significant alteration of cell migration while that of TFFI2 resulted in a modest change. Abrogation of E2F5 and TFPI2 expression was associated with significant changes in the gelatinolytic activity of active forms of MMP-2 and MMP-9. Moreover, E2F5, MMP-2 and MMP-9 levels were elevated in biopsies of PCa patients relative to that of benign hyperplasia, while TFPI2 expression was reduced. MMP-9 was coimmunoprecipitated with anti-TFPI2-IgG in PCa tissue samples suggesting a direct interaction between the proteins. Finally, artemisinin treatment in PC3 cells repressed E2F5 along with MMP-2/MMP-9 while triggering TFPI2 expression which alleviated PC3 aggressiveness possibly through inhibition of MMP activities. Together, our study reinstates an oncogenic role of E2F5 which operates as a dual-function transcription factor for its targets TFPI2, MMP-2 and MMP-9 and promotes cellular invasiveness. This study also indicates a therapeutic potential of artemisinin, a natural compound which acts by correcting dysfunctional E2F5/TFPI2/MMP axis in PCa.
Collapse
Affiliation(s)
- Deepmala Karmakar
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Jyotirindra Maity
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.,Department of Life Sciences, Homi Bhaba National Institute (HBNI), BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Puskar Shyam Chowdhury
- Department of Urology, K. P. C. Medical College and Hospital Campus, Jadavpur, Kolkata, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.,Department of Life Sciences, Homi Bhaba National Institute (HBNI), BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | | |
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Abak A, Abbas Raza SH, Pichler M, Taheri M. Role of non-coding RNAs in modulating the response of cancer cells to paclitaxel treatment. Biomed Pharmacother 2020; 134:111172. [PMID: 33360156 DOI: 10.1016/j.biopha.2020.111172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel is a chemotherapeutic substance that is administered for treatment of an extensive spectrum of human malignancies. In spite of its potent short-term effects against tumor cells, resistance to paclitaxel occurs in a number of patients precluding its long-term application in these patients. Non-coding RNAs have been shown to influence response of cancer cells to this chemotherapeutic agent via different mechanisms. Mechanistically, these transcripts regulate expression of several genes particularly those being involved in the apoptotic processes. Lots of in vivo and in vitro assays have demonstrated the efficacy of oligonucleotide-mediated microRNAs (miRNA)/ long non-coding RNAs (lncRNA) silencing in enhancement of response of cancer cells to paclitaxel. Therefore, targeted therapies against non-coding RNAs have been suggested as applicable modalities for combatting resistance to this agent. In the present review, we provide a summary of studies which assessed the role of miRNAs and lncRNAs in conferring resistance to paclitaxel.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
A Compressive Review about Taxol ®: History and Future Challenges. Molecules 2020; 25:molecules25245986. [PMID: 33348838 PMCID: PMC7767101 DOI: 10.3390/molecules25245986] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.
Collapse
|
12
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
13
|
Liu X, Hu C. Novel Potential Therapeutic Target for E2F1 and Prognostic Factors of E2F1/2/3/5/7/8 in Human Gastric Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:824-838. [PMID: 32953933 PMCID: PMC7479313 DOI: 10.1016/j.omtm.2020.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
E2F transcription factors (E2Fs) were found to be related with cell activities and disease progression among a variety of different tumors, including regulating cell division and cell proliferation. In the analysis, it aimed to focus on transcriptional and survival information of E2Fs in gastric cancer (GC) from Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, Database for Annotation, Visualization and Integrated Discovery (DAVID), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Oncomine databases. It was found that the expression of E2F1/2/3/5/7/8 in GC tissues was obviously higher than the normal. Of interest, none of the E2Fs was related with pathological stages. Nevertheless, high expression of E2F2/3/5/7/8 was related with better survival data, except E2F6 regarding shorter first-progression (FP) survival. High expression levels of E2F2/5/7/8 have significant correlations with overall survival (OS) in patients with intestinal and diffuse GC, and this prognostic value is not affected by gender. Oppositely, the lower level of E2F1/4 illustrated superior survival data. Moreover, increased expression of E2F1 in GC tissues might play an important role in the development of GC. Collectively, E2F1 could be a potential therapeutic target for patients with GC. E2F1/2/3/5/7/8 might be original prognostic predictors of GC.
Collapse
Affiliation(s)
- Xuhong Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
14
|
Zhang B, Tian L, Xie J, Chen G, Wang F. Targeting miRNAs by natural products: A new way for cancer therapy. Biomed Pharmacother 2020; 130:110546. [PMID: 32721631 DOI: 10.1016/j.biopha.2020.110546] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through mRNA degradation or translation inhibition. MiRNAs play important roles in a variety of biological processes, and dysregulation of miRNA expression is highly associated with cancer development. Individual miRNA regulates multiple gene expressions, enabling them to regulate multiple cellular signaling pathways simultaneously. Hence, miRNAs could be served as cancer biomarkers for diagnosis and prognosis, and also therapeutic targets. Recently, more and more evidences showed that natural products such as paclitaxel, curcumin, resveratrol, genistein or epigallocatechin-3-gallate exert their anti-proliferative and/or pro-apoptotic effects through regulating one or more miRNAs, leading to the inhibition of cancer cell growth, induction of apoptosis or enhancement of conventional cancer therapeutic efficacy. Herein, we outlined the recent advances in the regulation of miRNAs expression by the natural products and highlight the importance of these natural drugs as a potential strategy in cancer treatment. This review will help us better understand how natural products modulate miRNAs and contribute to the development of effective and safe natural drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| |
Collapse
|
15
|
Li Q, Shi J, Xu X. MicroRNA-1271-5p inhibits the tumorigenesis of ovarian cancer through targeting E2F5 and negatively regulates the mTOR signaling pathway. Panminerva Med 2020; 63:336-342. [PMID: 32414231 DOI: 10.23736/s0031-0808.20.03939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND MicroRNA-1271-5p (miR-1271-5p) has been reported to participate in the progression of many human cancers. However, the role of miR-1271-5p still remains unclear in ovarian cancer (OC). Therefore, we explored the effect of miR-1271-5p on the development of OC in present study. METHODS We measured the miR-1271-5p expression via the qRT-PCR assay. Then the function of miR-1271-5p was analyzed through MTT and Transwell assays. The relationship among miR-1271-5p and E2F5 was verified by dual luciferase assay. The protein expression levels were examined through western blot. RESULTS MiR-1271-5p was downregulated in OC tissues which predicted poor prognosis of OC patients. Moreover, E2F5 was a direct target of miR-1271-5p in OC. And miR-1271-5p suppressed cell proliferation, migration and invasion in OC through targeting E2F5. Furthermore, E2F5 was upregulated in OC tissues which predicted poor prognosis of OC patients. Besides that, miR-1271-5p suppressed EMT and mTOR pathway in OC. CONCLUSIONS MiR-1271-5p inhibited the tumorigenesis of OC through targeting E2F5 and negatively regulated the mTOR signaling pathway.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Junyu Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xiaoli Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China -
| |
Collapse
|
16
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
17
|
Feng X, Zhu M, Liao B, Tian T, Li M, Wang Z, Chen G. Upregulation of miR-552 Predicts Unfavorable Prognosis of Gastric Cancer and Promotes the Proliferation, Migration, and Invasion of Gastric Cancer Cells. Oncol Res Treat 2020; 43:103-111. [PMID: 31958799 DOI: 10.1159/000505377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating evidence indicates that micro-RNAs play a key role in tumor progression and prognosis. However, the overall biological role and clinical significance of microRNA-552 (miR-552) in the pathogenesis of gastric cancer (GC) remain unclear. METHODS miR-552 expression was measured in 122 pairs of cancerous and noncancerous tissues and cell lines by quantitative real-time polymerase chain reaction. The relationship between miR-552 and the clinical parameters of patients was analyzed by the χ2 test; Kaplan-Meier analysis and multivariate Cox regression analysis were used to predict the overall survival time and prognosis of patients with different expression of miR-552. Finally, CCK-8 and Transwell were used to detect the changes in cell proliferation, migration, and invasion ability. RESULTS miR-552 was expressed at markedly high levels in GC tissues compared to normal tissues and in some GC cell lines (p < 0.001). The upregulation of miR-552 was significantly associated with tumors with advanced TNM stage (p = 0.026), lymph node metastasis (p = 0.018), intestinal metaplasia (p = 0.044), and genomically stable subtype (p = 0.035). Moreover, GC patients with high miR-552 expression showed shorter overall survival (log-rank test, p = 0.011) than those with low expression. Meanwhile, miR-552 was an independent prognostic factor for GC patients (HR 5.657, 95% CI 1.619-19.761, p = 0.007). Finally, miR-552 overexpression promoted the proliferation, migration, and invasion of GC cells (p < 0.01). CONCLUSION Taken together, our results indicate that miR-552, as an oncogene of GC, can promote cell proliferation, migration, and invasion, and miR-552 may be a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department of Diagnosis and Treatment of Gastrointestinal Disease, Shanghai No. 7 People's Hospital, Shanghai, China
| | - Mei Zhu
- Department of Administration and General Family Medicine, Jinqiao Community Health Service Center in Pudong New Area, Shanghai, China
| | - Bingling Liao
- Department of Diagnosis and Treatment of Gastrointestinal Disease, Shanghai No. 7 People's Hospital, Shanghai, China
| | - Tianning Tian
- Emergency Trauma Center, Shanghai No. 7 People's Hospital, Shanghai, China
| | - Minhong Li
- Department of Diagnosis and Treatment of Gastrointestinal Disease, Shanghai No. 7 People's Hospital, Shanghai, China
| | - Zhibo Wang
- Department of Diagnosis and Treatment of Gastrointestinal Disease, Shanghai No. 7 People's Hospital, Shanghai, China
| | - Guoyan Chen
- Department of Diagnosis and Treatment of Gastrointestinal Disease, Shanghai No. 7 People's Hospital, Shanghai, China,
| |
Collapse
|
18
|
Inhibition of protein FAK enhances 5-FU chemosensitivity to gastric carcinoma via p53 signaling pathways. Comput Struct Biotechnol J 2019; 18:125-136. [PMID: 31969973 PMCID: PMC6961071 DOI: 10.1016/j.csbj.2019.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
The small molecule drug 5-fluorouracil (5-FU) is widely used in the treatment for gastric cancer (GC), however, it exerts poor efficacy and is associated with acquired and intrinsic resistance. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a key role in adhesion, migration, and proliferation of gastric carcinoma cells, suggesting that this kinase may be a promising therapeutic target. Differentially expressed FAK in GC tissue was detected by RT-qPCR and TCGA database analysis. To investigate the biological functions of FAK, loss-of-function experiments were performed. CCK-8 assay, colony formation assay, flow cytometry, dual-luciferase reporter assays, and western blot assays were conducted to determine the underlying mechanisms of FAK in 5-FU chemosensitivity in GC. FAK is overexpressed in GC patients, and positively correlated with poor prognosis. The use of shRNA interference to target FAK decreased proliferation and increased apoptosis of GC cells in vitro. Importantly, FAK silencing enhanced the therapeutic efficacy of 5-FU, leading to reduced tumor growth in vivo. We further demonstrated that FAK silencing increased 5-FU-induced caspase-3 activity, and promoted p53 transcriptional activities. Clinical data also has shown that patients with higher levels of FAK had significantly shorter overall survival (OS) and time to first progression (FP) than those with lower levels of FAK. These findings indicate that FAK plays a critical role in 5-FU chemosensitivity in GC, and the use of FAK inhibitors as an adjunct to 5-FU might be an effective strategy for patients who undergo chemotherapy.
Collapse
|
19
|
Sun F, Zhang C, Ma D, Wang K. MicroRNA-544 inhibits esophageal squamous cell carcinoma cell proliferation and enhances sensitivity to cisplatin by repressing E2F transcription factor 5. Oncol Lett 2019; 18:4203-4209. [PMID: 31579422 PMCID: PMC6757299 DOI: 10.3892/ol.2019.10749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/09/2019] [Indexed: 02/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide. MicroRNA (miRNA)-544 is an important cancer-associated RNA that is downregulated in multiple types of cancer. However, the role of miR-544 in ESCC progression remains unknown. In the present study, miR-544 expression level was determined via RT-qPCR in 30 pairs of ESCC and adjacent normal tissues and in a panel of ESCC cell lines. Cell proliferation and cell apoptosis were assessed by MTT and flow cytometry assays. Luciferase reporter assay and western blot analysis were conducted to verify E2F transcription factor 5 (E2F5), an oncogene in ESCC, as a novel target gene of miR-544. The results illustrated that miR-544 is frequently downregulated in ESCC tissues and cell lines. Overexpression of miR-544 in ESCC cells resulted in decreased cell proliferation and increased cell apoptosis. Thus, E2F5 was identified as a target of miR-544, and its expression was negatively correlated with miR-544 expression in clinical ESCC tissues. More importantly, overexpression of miR-544 led to increased sensitivity of ESCC cells to cisplatin, an anticancer drug. Overall, these findings indicate that miR-544 serves as a tumor suppressor by targeting E2F5; thus, miR-544 may be a therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Fengrong Sun
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Cuiping Zhang
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Deliang Ma
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Kai Wang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
20
|
Synergistic anti-tumor effect of paclitaxel and miR-34a combined with ultrasound microbubbles on cervical cancer in vivo and in vitro. Clin Transl Oncol 2019; 22:60-69. [DOI: 10.1007/s12094-019-02131-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
|
21
|
Chen G, Yu L, Dong H, Liu Z, Sun Y. MiR-182 enhances radioresistance in non-small cell lung cancer cells by regulating FOXO3. Clin Exp Pharmacol Physiol 2019; 46:137-143. [PMID: 30307642 DOI: 10.1111/1440-1681.13041] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Gang Chen
- Department of Respiratory Medicine; People's Hospital of Haining; Haining China
| | - Lina Yu
- Department of Respiratory Medicine; People's Hospital of Haining; Haining China
| | - Hui Dong
- Department of Respiratory Medicine; People's Hospital of Haining; Haining China
| | - Zhihao Liu
- Department of Respiratory Medicine; People's Hospital of Haining; Haining China
| | - Yahong Sun
- Department of Respiratory Medicine; People's Hospital of Haining; Haining China
| |
Collapse
|
22
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
23
|
Huang M, Gong X. Let-7c Inhibits the Proliferation, Invasion, and Migration of Glioma Cells via Targeting E2F5. Oncol Res 2018; 26:1103-1111. [PMID: 29362021 PMCID: PMC7844676 DOI: 10.3727/096504018x15164123839400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As a member of the miRNA family, let-7c has been identified as a tumor suppressor in many cancers. However, the molecular biological function of let-7c in glioma has not been elucidated. The aim of this study was to explore let-7c expression levels and evaluate its function in glioma cells. We first measured the expression of let-7c in four glioma cell lines and a normal cell line by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and the results showed that let-7c was downregulated in glioma cells. By applying gain-of-function and loss-of-function assays, the experiments suggested that dysregulation of let-7c could obviously affect cell proliferation, metastasis, and invasion. Based on online bioinformatics analysis and Dual-Luciferase Reporter assays, we found that E2F5 was a target gene of let-7c and contributed to the function of let-7c in glioma cells. Our investigations indicated that loss of let-7c contributed to the progression of glioma cells.
Collapse
Affiliation(s)
- Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, P.R. China
| | - Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, P.R. China
| |
Collapse
|
24
|
Yang Q, Zhang D, Li Y, Li Y, Li Y. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-κB signaling pathway. Biomed Pharmacother 2017; 97:1424-1433. [PMID: 29156532 DOI: 10.1016/j.biopha.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive inflammatory response and apoptosis play an important role in the sepsis-induced liver injury. Paclitaxel, a diterpene alkaloid of Taxus brevifolia, is widely used as an anti-tumor drug and shows protective effects on acute lung and kidney injury. However, whether it has a protective effect against sepsis-induced liver injury has not been reported. The objective of this study was to investigate the protective effects of paclitaxel in septic liver injury in mice and associated molecular mechanisms. Our results showed that paclitaxel treatment improved LPS-induced liver injury, as evidenced by the reduced aminotransferase activity, histological scores and apoptosis in the liver tissues. This was accompanied by the alleviating of inflammation and oxidative stress, such as decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-6) interleukin-1β (IL-1β) and malondialdehyde (MDA) and increased levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in serum and liver tissues. Subsequent microarray and qRT-PCR analysis further showed that miR-27a was significantly decreased in mice with sepsis, which was recovered by paclitaxel pretreatment. Antagomir-miR-27a suppressed the therapeutic effects of paclitaxel in mice liver injury model via promoting inflammatory response. Of note, TAB3, which participated in the activation of the NF-κB signaling pathway, was identified as a direct target of miR-27 by luciferase reporter gene assays. Then, we revealed a reverse relationship between miR-27a expression levels and TAB3 mRNA levels in liver tissues from septic mice. Furthermore, paclitaxel treatment significantly decreased the expression of NF-κB p65, but increased inhibitor of nuclear factor-κB-α (IκBα) protein levels in septic mice, suggesting the inactivation of NF-κB signaling pathway. Notably, the inhibitory effects of paclitaxel on NF-κB signaling pathway were reversed by antagomir-miR-27a. Our data indicated that paclitaxel significantly attenuated septic induced liver injury through reducing inflammatory response via miR-27a/TAB3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Dongshan Zhang
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, China
| | - Ya Li
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Yongquan Li
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Yinpeng Li
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China.
| |
Collapse
|
25
|
Shen J, Niu W, Zhang H, Jun M, Zhang H. Downregulation of MicroRNA-147 Inhibits Cell Proliferation and Increases the Chemosensitivity of Gastric Cancer Cells to 5-Fluorouracil by Directly Targeting PTEN. Oncol Res 2017; 26:901-911. [PMID: 28950928 PMCID: PMC7844761 DOI: 10.3727/096504017x15061902533715] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. This study aimed to investigate the expression patterns, biological roles, and underlying mechanisms of microRNA-147 (miR-147) in gastric cancer. The present study demonstrated that miR-147 was significantly upregulated in gastric cancer tissues and cell lines. Downregulation of miR-147 decreased cell proliferation and enhanced the chemosensitivity of gastric cancer cells to 5-fluorouracil (5-FU) through the cell apoptosis pathway. In addition, phosphatase and tensin homolog (PTEN) was mechanically identified as the direct target of miR-147 in gastric cancer. PTEN knockdown reversed the effects of miR-147 downregulation on the proliferation, chemosensitivity, and 5-FU-induced apoptosis of gastric cancer cells. Moreover, miR-147 regulated the PI3K/AKT signaling pathway in gastric cancer by targeting PTEN. In conclusion, miR-147 suppressed the proliferation and enhanced the chemosensitivity of gastric cancer cells to 5-FU by promoting cell apoptosis through directly targeting PTEN and regulating the PI3K/AKT signaling pathway. This study provides important insight into the molecular mechanism that underlies the chemoresistance of gastric cancer cells. The results of this study could aid the development of a novel therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Jianjun Shen
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Weina Niu
- Department of Oncology, Anhui Cancer Hospital, Hefei, Anhui, P.R. China
| | - Hongbo Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Ma Jun
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Hongyan Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
26
|
Yao Y, Luo J, Sun Q, Xu T, Sun S, Chen M, Lin X, Qian Q, Zhang Y, Cao L, Zhang P, Lin Y. HOXC13 promotes proliferation of lung adenocarcinoma via modulation of CCND1 and CCNE1. Am J Cancer Res 2017; 7:1820-1834. [PMID: 28979806 PMCID: PMC5622218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023] Open
Abstract
In this study, we confirmed that HOXC13 might be a potential oncogene in lung adenocarcinoma through an analysis of The Cancer Genome Atlas (TCGA) datasets. Further analysis revealed that the expression of HOXC13 was significantly higher in lung adenocarcinoma tissues than in adjacent normal tissues; importantly, its expression correlated with poor clinical characteristics and worse prognosis. In vitro experiments showed that HOXC13 expression generally increased in lung adenocarcinoma cell lines. Moreover, knockdown of HOXC13 inhibited lung adenocarcinoma cell proliferation, and induced G1-phase arrest via downregulation of CCND1 and CCNE1. Conversely, HOXC13 overexpression promoted lung adenocarcinoma cell proliferation, and decreased the percentage of cells in G1-phase via upregulation of CCND1 and CCNE1. We also found that miR-141 downregulated HOXC13, by directly targeting its 3'UTR, and inhibited proliferation of lung adenocarcinoma cells. Taken together, our results suggest that HOXC13, which is directly targeted by miR-141, is highly expressed in lung adenocarcinoma, and promotes proliferation of lung adenocarcinoma by modulating the expression of CCND1 and CCNE1.
Collapse
Affiliation(s)
- Yu Yao
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing UniversityNanjing, Jiangsu, China
| | - Qi Sun
- Department of Cardiothoracic Surgery, Jinling Hospital, Southern Medical UniversityNanjing, Jiangsu, China
| | - Ting Xu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Siqing Sun
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Meili Chen
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Xin Lin
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Qiuping Qian
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Yu Zhang
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Lin Cao
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Po Zhang
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Yong Lin
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
| |
Collapse
|
27
|
Xu X, Cai N, Zhi T, Bao Z, Wang D, Liu Y, Jiang K, Fan L, Ji J, Liu N. MicroRNA-1179 inhibits glioblastoma cell proliferation and cell cycle progression via directly targeting E2F transcription factor 5. Am J Cancer Res 2017; 7:1680-1692. [PMID: 28861324 PMCID: PMC5574940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an extraordinary aggressive disease that requires more effective therapeutic options. In the past few years, many microRNAs (miRNAs) have been demonstrated to have important roles in promoting GBM progression. However, little is known about the role of miR-1179 in GBM. In the present study, we found that miR-1179 was significantly downregulated in glioma tissues and cell lines. Functional experiments showed that introduction of miR-1179 dramatically suppressed GBM cell proliferation and cell cycle progression. Importantly, treatment of miR-1179 strongly inhibited tumor growth in a subcutaneous GBM model. Further studies showed that E2F transcription factor 5 (E2F5), a key transcription factor that controls cell cycle transition, was a direct target of miR-1179. Silencing of E2F5 inhibited the proliferative ability of GBM cells and induces cell cycle arrest, which were consistent with the effects of miR-1179 overexpression. More importantly, reintroduction of E2F5 into GBM cells reversed the tumor-suppressive function of miR-1179. Finally, we demonstrated that miR-1179 expression was negatively correlated with E2F5 messenger RNA (mRNA) levels in high-grade gliomas. Our findings provide new insights into the role of miR-1179 in the progression of GBM, and implicate the potential application of miR-1179 in GBM therapy.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Ning Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Tongle Zhi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Dong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Yinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Kuan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
- Department of Neurosurgery, Yixing People’s HospitalYixing 210000, Jiangsu, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| |
Collapse
|