1
|
Peng C, Wang Y, Guo Y, Li J, Liu F, Fu Y, Yu Y, Zhang C, Fu J, Han F. A literature review on signaling pathways of cervical cancer cell death-apoptosis induced by Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118491. [PMID: 38936644 DOI: 10.1016/j.jep.2024.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer (CC) is a potentially lethal disorder that can have serious consequences for a woman's health. Because early symptoms are typically only present in the middle to late stages of the disease, clinical diagnosis and treatment can be challenging. Traditional Chinese medicine (TCM) has been shown to have unique benefits in terms of alleviating cancer clinical symptoms, lowering the risk of recurrence after surgery, and reducing toxic side effects and medication resistance after radiation therapy. It has also been shown to improve the quality of life for patients. Because of its improved anti-tumor effectiveness and biosafety, it could be considered an alternative therapy option. This study examines how TCM causes apoptosis in CC cells via signal transduction, including the active components and medicinal tonics. It also intends to provide a reliable clinical basis and protocol selection for the TCM therapy of CC. METHODS The following search terms were employed in PubMed, Web of Science, Embase, CNKI, Wanfang, VIP, SinoMed, and other scientific databases to retrieve pertinent literature on "cervical cancer," "apoptosis," "signaling pathway," "traditional Chinese medicine," "herbal monomers," "herbal components," "herbal extracts," and "herbal formulas." RESULTS It has been demonstrated that herbal medicines can induce apoptosis in cells of the cervix, a type of cancer, by influencing the signaling pathways involved. CONCLUSION A comprehensive literature search was conducted, and 148 papers from the period between January 2017 and December 2023 were identified as eligible for inclusion. After a meticulous process of screening, elimination and summary, generalization, and analysis, it was found that TCM can regulate multiple intracellular signaling pathways and related molecular targets, such as STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, p53, HIF-1α, Fas/FasL and so forth. This regulatory capacity was observed to induce apoptosis in cervical cancer cells. The study of the mechanism of TCM against cervical cancer and the screening of new drug targets is of great significance for future research in this field. The results of this study will provide ideas and references for the future development of Chinese medicine in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chengxin Zhang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiangmei Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
2
|
Chen C, Sun Y, Wang Z, Huang Z, Zou Y, Yang F, Hu J, Cheng H, Shen C, Wang S. Pinellia genus: A systematic review of active ingredients, pharmacological effects and action mechanism, toxicological evaluation, and multi-omics application. Gene 2023; 870:147426. [PMID: 37044184 DOI: 10.1016/j.gene.2023.147426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-β (TGF-β) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Zhijing Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Wang C, Lin KYH, Wu MY, Lin CL, Lin JG, Chang CYY, Lin WC, Yen HR. Adjunctive Chinese Herbal Medicine Treatment is Associated With an Improved Survival Rate in Patients With Cervical Cancer in Taiwan: A Matched Cohort Study. Integr Cancer Ther 2021; 20:15347354211061752. [PMID: 34923874 PMCID: PMC8721688 DOI: 10.1177/15347354211061752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Cervical cancer is one of the most common cancers in Taiwan. Some patients take Chinese herbal medicine (CHM). However, very few current studies have ascertained the usage and efficacy of CHM in patients with cervical cancer. The aim of this study was to investigate the benefits of complementary CHM among patients with cervical cancer in Taiwan. Methods We included the newly diagnosed cervical cancer patients who were registered in the Taiwanese Registry for Catastrophic Illness Patients Database between 2000 and 2010. The end of follow-up period was December 31, 2011. Patients who were less than 20 years old, had missing information for age, withdrew from the National Health Insurance (NHI) program during the follow-up period, or only received other TCM interventions such as acupuncture or tuina massage were excluded from our study. After performing 1:1 frequency matching by age and index date, we enrolled 7521 patients in both CHM and non-CHM user groups. A Cox regression model was used to compare the hazard ratios (HRs) of the risk of mortality. The Kaplan-Meier curve was used to compare the difference in survival time. Results According to the Cox hazard ratio model mutually adjusted for CHM use, age, comorbidity, treatment, and chemotherapeutic agents used, we found that CHM users had a lower hazard ratio of mortality risk (adjusted HR = 0.29, 95%CI = 0.27-0.31). The survival probability was higher for patients in the CHM group. Bai-Hua-She-She-Cao (Herba Oldenlandiae, synonym Herba Hedyotis diffusae) and Jia-Wei-Xiao-Yao-San were the most commonly prescribed single herb and Chinese herbal formula, respectively. Conclusions Adjunctive CHM may have positive effects of reducing mortality rate and improving the survival probability for cervical cancer patients. Further evidence-based pharmacological investigations and clinical trials are warranted to confirm the findings in our study.
Collapse
Affiliation(s)
- Chieh Wang
- China Medical University Hospital, Taichung, Taiwan
| | - Kent Yu-Hsien Lin
- Royal North Shore Hospital, Sydney, NSW, Australia.,Bankstown-Lidcombe Hospital, Sydney, NSW, Australia
| | - Mei-Yao Wu
- China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- China Medical University Hospital, Taichung, Taiwan
| | | | - Cherry Yin-Yi Chang
- China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Wu-Chou Lin
- China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan.,Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Wang Y, Lu C, Huang H, Yao S, Xu C, Ye Y, Gui S, Li G. A lipid-soluble extract of Pinellia pedatisecta Schott orchestrates intratumoral dendritic cell-driven immune activation through SOCS1 signaling in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:112837. [PMID: 32276009 DOI: 10.1016/j.jep.2020.112837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott extract (PE) is generated from Pinellia pedatisecta Schott, a traditional Chinese medicinal plant. PE suppresses cervical tumor growth and exhibits effects on dendritic cells (DCs) that lead to modulation of antitumor CD4+ and CD8+ responses. AIMS To explore the underlying mechanisms by which PE modulates tumor-associated dendritic cell (TADC) activation and function. METHODS DCs and TADCs were generated from murine bone marrow and exposed to PE solutions at different doses, as well as to repeated doses separated at different time intervals. Quantitative PCR, Western blot analysis, flow cytometry, and gene silencing were used to analyze the modulatory effects of PE on the SOCS1/JAK2/STAT pathways. Furthermore, we separated human cervical tumor-infiltrated DCs (TIDCs) and conducted an ex-vivo stimulation model to observe the effect of PE. For phenotypic analysis of cultured DCs and ex vivo human specimens, we used flow cytometry to detect the molecular markers associated with cell function. RESULTS In cultured TADCs and human cervical TIDCs, maturation- and functional markers (MHCII, CD80, CD83, CD86, and IL-12) were downregulated, whereas SOCS1 was upregulated. PE enhanced the expression of CD80, CD86, and IL-12 in cervical TIDCs, which induced increased expression of CD107a, GZMB, and perforin in CTLs, and furthermore induced apoptosis in a larger number of tumor cells. In cultured TADCs, PE downregulated SOCS1 expression and activated the phosphorylation of JAK2, STAT1, STAT4, and STAT5 in both dose- and time-dependent manners. The effects of PE upregulating MHCII, CD80, CD86, IL-12 on TADCs were blocked after SOCS1 silencing. CONCLUSIONS In this study, PE restored the impaired function of cervical TIDCs, thereby eliciting further antitumor CTL responses. The effects of PE on TADCs were mediated through inhibition of SOCS1 and activation of downstream JAK2-STAT1/STAT4/STAT5 pathways. PE may be a potent and effective immunomodulatory drug for antitumor treatment via the blockade of SOCS1 signaling in DCs.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Chong Lu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
5
|
Wei W, Liu C. Prognostic and predictive roles of microRNA‑411 and its target STK17A in evaluating radiotherapy efficacy and their effects on cell migration and invasion via the p53 signaling pathway in cervical cancer. Mol Med Rep 2019; 21:267-281. [PMID: 31746360 PMCID: PMC6896360 DOI: 10.3892/mmr.2019.10826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies worldwide. However, the pathogenesis of cervical cancer remains to be fully elucidated. Increasing evidence shows that microRNAs (miRNAs) may be involved in the pathogenesis of cervical cancer. The present study tested the hypothesis that the overexpression of miRNA (miR)-411 may delay, whereas the overexpression of serine/threonine kinase 17a (STK17A) may contribute to, cervical cancer development and progression through the p53 pathway. Cervical cancer tissues and adjacent normal tissues were obtained from 141 patients with cervical cancer following radiotherapy, with efficacy evaluated. The receiver operating characteristic curve was plotted to show the value of miR-411 and STK17A in predicting the efficacy of radiotherapy. Cox's proportional hazards regression model was utilized for multivariate analysis. A series of inhibitors, mimics or small interfering RNAs against STK17A were introduced to validate the regulatory mechanism of miR-411 in governing STK17A, determined with a luciferase reporter gene assay. The expression of miR-411 and STK17A, and the status of the p53 signaling pathway were evaluated. The colony forming ability, proliferation, migration, invasion and apoptosis of CaSki cells were assessed using a colony formation assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry, respectively. miR-411 was upregulated but STK17A was reciprocal in cervical tissues. The overexpression of miR-411 and low expression of STK17A were correlated with high efficacy of radiotherapy. miR-411 and STK17A had predictive value for the efficacy of radiotherapy; miR-411 was the protective factor and STK17A was a risk factor for prognosis of cervical cancer. Increasing miR-411 activated the p53 signaling pathway and promoted cell apoptosis, but inhibited cell proliferation, invasion and migration. STK17A, an miR-411 target, increased following miR-411 over-expression, whereas the p53 signaling pathway was activated following STK17A inhibition. It was observed that the effect of miR-411 inhibition was lost following STK17A silencing. These findings indicate that the miR-411-mediated direct suppression of STK17A induces apoptosis and suppresses the proliferation, migration and invasion of human cervical cancer cells via the p53 signaling pathway. Additionally, miR-411 and STK17A have predictive value for the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Wei Wei
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Cun Liu
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
6
|
Wang Y, Huang H, Yao S, Li G, Xu C, Ye Y, Gui S. A lipid-soluble extract of Pinellia pedatisecta Schott enhances antitumor T cell responses by restoring tumor-associated dendritic cell activation and maturation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111980. [PMID: 31146000 DOI: 10.1016/j.jep.2019.111980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott (PPS)is a traditional Chinese medicine functioning as reducing swelling and drying dampness. Pinellia pedatisecta Schott extract (PE) has been confirmed to suppress cervical tumor growth and modulate the antitumor CD4+T helper immunity towards Th1. AIMS To explore the roles of PE in modulating tumor-associated dendritic cell (TADC) activation and function. METHODS For in vivo studies, HPV+TC-1 mouse tumor models were conducted and treated with PE for 3 weeks (10 mg/kg/d or 20 mg/kg/day). The immune profiles of spleen, tumor-draining lymph nodes (TDLNs), tumor and serum were analyzed by flow cytometry and multiplexed bead-based immunoassay. For in vitro studies, TADCs were generated by tumor-conditioned medium and treated with PE solution. The maturation and function of TADCs were evaluated by flow cytometry, ELISA, mixed lymphocyte reaction (MLR) and cytotoxic T lymphocyte (CTL) assay. Furthermore, the effect of PE on SOCS1 pathway was examined by western blotting and real time PCR. RESULTS PE upregulated the expression of major histocompatibility complex class II (MHCII) and costimulatory molecules CD80 and CD86 on TADCs and promoted IL-12 secretion from TADCs. In addition, PE-treated TADCs promoted the proliferation of CD4+ and CD8+ T cells and induced the differentiation of IFN-γ+CD4+ and GZMB+CD8+ T cells. PE-treated TADCs also elicited a more powerful antigen-specific cytotoxic T lymphocyte (CTL) response. Furthermore, PE treatment in vivo enhanced the proliferation, activated the functional ability (increased Ki67, CD137, GZMB or IFN-γ, TNF-α expression) and reversed the exhaustion (impaired CD95 or PD-1 expression) of antitumor T cells. Mechanistically, PE inhibited SOCS1-restrained JAK2 activation in TADCs. CONCLUSIONS PE efficiently restored the immature status of TADCs and enhanced their function as antigen-presenting cells to further elicit antitumor Th1 and CTL responses, suggesting that PE may be a potential immunomodulatory drug for cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| |
Collapse
|
7
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Huang H, Zhang M, Yao S, Zhang M, Peng J. Immune modulation of a lipid-soluble extract of Pinellia pedatisecta Schott in the tumor microenvironment of an HPV + tumor-burdened mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:103-115. [PMID: 29783020 DOI: 10.1016/j.jep.2018.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott extract (PE), a traditional Chinese medicine, has been used to reduce swelling, dry dampness and suppress cervical tumors. AIMS To evaluate the roles of PE in the regulation of anti-tumor effects and the cellular immune response in the tumor microenvironment. METHODS The immune microenvironment of HPV+TC-1 tumors was examined by immunohistochemistry, real-time PCR and flow cytometry. RESULTS Our study demonstrated that PE in vitro could significantly increase the percentage of apoptosis and necrosis in HPV+TC-1 cells and block the cell cycle phase. In vivo treatment with PE eradicated established subcutaneous HPV+TC-1 tumors in wild-type C57BL/6 mice by infiltrating CD8+ T cells and CD4+ T cells and by directly suppressing tumor growth and resistance to avascular necrosis. The key factors in the canonical Wnt signaling pathway in the experimental group (PE+mDC+naive CD4+T cells) were challenged, and the levels of beta-catenin, C-myc, cyclin D1 and PPAR1 were significantly enhanced at the 5th day. In particular, the subset proportion of Th1 cells (characterized by IFNγ production and the transcription factor Tbet) increased significantly, and both Th2 cells (characterized by IL-4 production and the transcription factor GATA3) and Th17 cells (characterized by IL-17 production and the transcription factor RoRγt) decreased profoundly. CONCLUSIONS These findings linked the anti-tumor properties of PE with the immune microenvironment to present a reliable basis for the future practical application of PE in cervical cancer as a novel and pharmacologically safe immunotherapy strategy.
Collapse
Affiliation(s)
- Haixia Huang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| | - Mingxing Zhang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, P.R. China
| | - Meng Zhang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| | - Jing Peng
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032
| |
Collapse
|
9
|
Wang Q, Acharya N, Liu Z, Zhou X, Cromie M, Zhu J, Gao W. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:140-151. [PMID: 29458146 DOI: 10.1016/j.jep.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Experience-based herbal medicine as a complementary to modern western medicine has triggered an array of studies in quest of novel anticancer drugs. Scutellaria barbata D. Don (SB) is commonly used to treat different types of cancers, but its molecular mechanism of action is not clearly understood. In this study, we attempted to elucidate the mode of action of a traditional Chinese medicine prescription with a total of 14 components, named Lian-Jia-San-Jie-Fang (LJSJF, in Chinese), where SB works as the "principle" against non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS Four different NSCLC cell lines (A549, H460, H1650, and H1975) were used. Cytotoxicity, in vitro tumorigenicity, gene expression, and protein expression were analyzed by MTT assay, soft agar assay, real-time PCR, and Western blots, respectively. RESULTS Among the 14 components in LJSJF, SB was the only one to possess cytotoxic effects at its pharmacologically relevant doses. Additionally, we observed synergistically dose-dependent cytotoxic effects of SB in combination with other LJSJF components. After SB or LJSJF treatment, significant reductions in colony number and/or size were observed in A549 and H460; a notable dose-dependent decrease in EGFR was observed in A549, H460, and H1650; significant downregulation in EGFR and its downstream signaling targets mTOR and p38MAPK were also observed in A549 and H460; and p53 and p21 were significantly increased while survivin, cyclin D1, and MDM2 were significantly decreased in A549. Additionally, p53, p21, and Mettl7b were decreased, but p73 was increased in H460. Neither EGFR nor p53 was changed in H1975. Therefore, SB or LJSJF may induce cytotoxic effects by regulating multiple and/or distinct apoptotic pathways in different NSCLC cells. CONCLUSION LJSJF exerts more pronounced cytotoxic effects against NSCLC cells than SB does by synergistically regulating the underlining molecular mechanisms including EGFR and/or p53 signaling pathways.
Collapse
Affiliation(s)
- Qian Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States; Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Xianmei Zhou
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Meghan Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Jia Zhu
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States.
| |
Collapse
|