1
|
Xu J, Sadiq U, Zhao W, Xia H, Liu Y, Zhang R, Xu A. Integrated single-cell RNA sequencing reveals the tumor heterogeneity and microenvironment landscape during liver metastasis in adenocarcinoma of esophagogastric junction. Front Immunol 2025; 15:1484234. [PMID: 39850884 PMCID: PMC11754270 DOI: 10.3389/fimmu.2024.1484234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Background Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies. Methods We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases. This approach enabled us to characterize the diverse cell populations involved in the liver metastatic process. Results Our analysis revealed a significant involvement of fibroblasts and mural cells in AEGJ liver metastasis. We identified a specific fibroblast type in AEGJ liver metastasis and observed distinct gene expression patterns between adenocarcinoma of the esophagogastric junction and other stomach adenocarcinomas. Our study demonstrated high expression of the SFRP2 gene in pericyte cells during the liver metastasis of AEGJ. The incorporation of GEO, TCGA, and immunofluorescence staining of SFRP2 expression enhanced our study. High expression of SFRP2 in pericytes may influence vascular stability and angiogenesis through the Wnt pathway. Conclusion Our study provides novel insights into the cellular interactions and molecular mechanisms that underlie AEGJ liver metastasis. Targeting the identified subtype of fibroblasts or influencing SFRP2 gene expression in pericytes may offer new therapeutic strategies for combating this aggressive tumor.
Collapse
Affiliation(s)
- Junrui Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ussama Sadiq
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wangruizhi Zhao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengbo Xia
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiwei Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aman Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Saizonou I, Lascombe I, Monnien F, Bedgedjian I, Kleinclauss F, Algros MP, Fauconnet S. Concomitant decrease of E- and A-FABP expression predicts worse survival in urothelial bladder cancer patients. Sci Rep 2024; 14:15390. [PMID: 38965292 PMCID: PMC11224272 DOI: 10.1038/s41598-024-65972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Non-muscle invasive bladder cancers (NMIBC) pTa-pT1 are depicted by a high risk of recurrence and/or progression with an unpredictable clinical evolution. Our aim was to identify, from the original resection specimen, tumors that will progress to better manage patients. We previously showed that A-FABP (Adipocyte- Fatty Acid Binding Protein) loss predicted NMIBC progression. Here we determined by immunohistochemistry the prognostic value of E-FABP (Epidermal-Fatty Acid Binding Protein) expression in 210 tumors (80 pTa, 75 pT1, 55 pT2-T4). Thus, E-FABP low expression was correlated with a high grade/stage, the presence of metastatic lymph nodes, and visceral metastases (p < 0.001). Unlike A-FABP in NMIBC, E-FABP low expression was not associated with RFS or PFS in Kaplan-Meier analysis. But patients of the overall cohort with a high E-FABP expression had a longer mOS (53.8 months vs. 29.3 months, p = 0.029). The immunohistochemical analysis on the same NMIBC tissue sections revealed that when A-FABP is absent, a high E-FABP expression is detected. E-FABP could compensate A-FABP loss. Interestingly, patients, whose original tumor presents both low E-FABP and negative A-FABP, had the worse survival, those maintaining the expression of both markers had better survival. To conclude, the combined evaluation of A- and E-FABP expression allowed to stratify patients with urothelial carcinoma for optimizing treatment and follow-up.
Collapse
Affiliation(s)
- Inès Saizonou
- CHU Besançon, Service Anatomie et Cytologie Pathologiques, 25000, Besançon, France
| | - Isabelle Lascombe
- Université Franche-Comté, SINERGIES - LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Franck Monnien
- CHU Besançon, Service Anatomie et Cytologie Pathologiques, 25000, Besançon, France
| | - Isabelle Bedgedjian
- CHU Besançon, Service Anatomie et Cytologie Pathologiques, 25000, Besançon, France
| | - François Kleinclauss
- CHU Besançon, Service Urologie, Andrologie et Transplantation Rénale, 25000, Besançon, France
| | - Marie-Paule Algros
- CHU Besançon, Service Anatomie et Cytologie Pathologiques, 25000, Besançon, France
| | - Sylvie Fauconnet
- Université Franche-Comté, SINERGIES - LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France.
- CHU Besançon, Service Urologie, Andrologie et Transplantation Rénale, 25000, Besançon, France.
- CHU Besançon, Centre Investigation Clinique, Inserm CIC 1431, 25000, Besançon, France.
| |
Collapse
|
4
|
He G, Liu M, Chen TC, Huang LF, Ke YQ. SBFI-26 enhances apoptosis in docetaxel-treated triple-negative breast cancer cells by increasing ROS levels. BIOIMPACTS : BI 2024; 15:30137. [PMID: 39963566 PMCID: PMC11830146 DOI: 10.34172/bi.30137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2025]
Abstract
Introduction Fatty acid binding protein 5 (FABP5) exhibits heightened expression levels in triple-negative breast cancer. The inhibitor of FABP5, Stony Brook fatty acid-binding protein inhibitor 26 (SBFI-26), has demonstrated the capacity to suppress cell proliferation, migration, and invasion. This study delves into the functional mechanism and impact of combining SBFI-26 with docetaxel in treating MDA-MB-231 cells of triple-negative breast cancer. Methods Various concentrations of docetaxel and SBFI-26 were chosen for individual or combined treatments. The effects of SBFI-26, docetaxel, or their combination on cell cycle arrest and apoptosis were assessed using flow cytometry. Western blotting was utilised to detect the expression of apoptosis-related proteins, namely cysteinyl aspartate-specific proteases 3 (Caspase3), B cell leukemia/lymphoma 2 (Bcl-2), and Bcl-2 associated X (Bax), while intracellular reactive oxygen species (ROS) levels were determined using a fluorescence spectrophotometer. Results The IC50 values for SBFI-26 and docetaxel in inhibiting MDA-MB-231 cells were determined to be 106.1 μM and 86.14 nM, respectively. Significantly, the combination treatment augmented the proportion of G1 phase (apoptotic) cells by 3.67-fold compared to the control group (P < 0.0001). Furthermore, the apoptosis rate in the combination group was 2.59-fold higher than that in the docetaxel group (P < 0.0001) and demonstrated a significant increase of 1.82-fold compared with the SBFI-26 group (P < 0.001). Analyses revealed a decrease in the protein expression of Bcl-2, while Bax and Caspase3 exhibited an increase in the combination group for MDA-MB-231 cells. Moreover, the combined treatment group demonstrated a 2.97-fold increase (P < 0.0001) in ROS fluorescence intensity compared to the control group, a noteworthy 1.39-fold increase (P < 0.01) compared to the SBFI-26 treatment group, and a substantial 1.70-fold increase (P < 0.0001) compared to the docetaxel treatment group. Conclusion These findings suggest that the co-administration of SBFI-26 with docetaxel effectively enhances apoptosis in triple-negative breast cancer MDA-MB-231 cells by elevating intracellular ROS levels.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Mei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Tang cong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li fen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - You qiang Ke
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
He G, Zhang Y, Feng Y, Chen T, Liu M, Zeng Y, Yin X, Qu S, Huang L, Ke Y, Liang L, Yan J, Liu W. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation. J Cell Mol Med 2024; 28:e18212. [PMID: 38516826 PMCID: PMC10958404 DOI: 10.1111/jcmm.18212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
SBFI26, an inhibitor of FABP5, has been shown to suppress the proliferation and metastasis of tumour cells. However, the underlying mechanism by which SBFI26 induces ferroptosis in breast cancer cells remains largely unknown. Three breast cancer cell lines were treated with SBFI26 and CCK-8 assessed cytotoxicity. Transcriptome was performed on the Illumina platform and verified by qPCR. Western blot evaluated protein levels. Malondialdehyde (MDA), total superoxide dismutase (T-SOD), Fe, glutathione (GSH) and oxidized glutathione (GSSG) were measured. SBFI26 induced cell death time- and dose-dependent, with a more significant inhibitory effect on MDA-MB-231 cells. Fer-1, GSH and Vitamin C attenuated the effects but not erastin. RNA-Seq analysis revealed that SBFI26 treatment significantly enriched differentially expressed genes related to ferroptosis. Furthermore, SBFI26 increased intracellular MDA, iron ion, and GSSG levels while decreasing T-SOD, total glutathione (T-GSH), and GSH levels.SBFI26 dose-dependently up-regulates the expression of HMOX1 and ALOX12 at both gene and protein levels, promoting ferroptosis. Similarly, it significantly increases the expression of SAT1, ALOX5, ALOX15, ALOXE3 and CHAC1 that, promoting ferroptosis while downregulating the NFE2L2 gene and protein that inhibit ferroptosis. SBFI26 leads to cellular accumulation of fatty acids, which triggers excess ferrous ions and subsequent lipid peroxidation for inducing ferroptosis.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yiyuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yanjiao Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Tangcong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Mei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yue Zeng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Xiaojing Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Shaokui Qu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Youqiang Ke
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| |
Collapse
|
6
|
Lu F, Ye M, Hu C, Chen J, Yan L, Gu D, Xu L, Tian Y, Bai J, Tang Q. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/β-catenin pathway. Cancer Sci 2023; 114:3553-3567. [PMID: 37302809 PMCID: PMC10475765 DOI: 10.1111/cas.15883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are among the most frequently occurring neuroendocrine neoplasms (NENs) and require targeted therapy. High levels of fatty acid binding protein 5 (FABP5) are involved in tumor progression, but its role in pNENs remains unclear. We investigated the mRNA and protein levels of FABP5 in pNEN tissues and cell lines and found them to be upregulated. We evaluated changes in cell proliferation using CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays and examined the effects on cell migration and invasion using transwell assays. We found that knockdown of FABP5 suppressed the proliferation, migration, and invasion of pNEN cell lines, while overexpression of FABP5 had the opposite effect. Co-immunoprecipitation experiments were performed to clarify the interaction between FABP5 and fatty acid synthase (FASN). We further showed that FABP5 regulates the expression of FASN via the ubiquitin proteasome pathway and both proteins facilitate the progression of pNENs. Our study demonstrated that FABP5 acts as an oncogene by promoting lipid droplet deposition and activating the WNT/β-catenin signaling pathway. Moreover, the carcinogenic effects of FABP5 can be reversed by orlistat, providing a novel therapeutic intervention option.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
8
|
Kawaguchi K, Ohashi T, Kobayashi N, Kanemoto K, Nose M, Shinozaki R, Kataoka T, Fujii H. Aberrant DNA methylation-mediated NF-κB/fatty acid-binding protein 5 (FABP5) feed-forward loop promotes malignancy of colorectal cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159362. [PMID: 37414211 DOI: 10.1016/j.bbalip.2023.159362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Fatty acid-binding proteins (FABPs) are intracellular lipid-binding proteins that play roles in fatty acid transport and the regulation of gene expression. Dysregulated FABP expression and/or activity have been associated with cancer pathogenesis; in particular, epidermal-type FABP (FABP5) is upregulated in many types of cancer. However, the mechanisms regulating FABP5 expression and its involvement in cancer remain largely unknown. Here, we examined the regulation of FABP5 gene expression in non-metastatic and metastatic human colorectal cancer (CRC) cells. We found that FABP5 expression was upregulated in metastatic compared with non-metastatic CRC cells as well as in human CRC tissues compared with adjacent normal tissue. Analysis of the DNA methylation status of the FABP5 promoter showed that hypomethylation correlated with the malignant potential of the CRC cell lines. Moreover, FABP5 promoter hypomethylation also correlated with the expression pattern of splice variants of the DNA methyltransferase DNMT3B. ChIP assays and luciferase reporter assays demonstrated that the transcription factor nuclear factor-kappa B (NF-κB) was involved in regulating FABP5 expression. FABP5 expression could be upregulated in metastatic CRC cells by sequential promotion of DNA demethylation followed by activation of NF-κB. We also found that upregulated FABP5 in turn controlled NF-κB activity through IL-8 production. Collectively, these findings suggest the existence of a DNA methylation-dependent NF-κB /FABP5 positive feed-forward loop that may lead to constitutive activation of NF-κB signaling pathway and play a crucial role in CRC progression.
Collapse
Affiliation(s)
- Koichiro Kawaguchi
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Tsubasa Ohashi
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Narumi Kobayashi
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Kotoya Kanemoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Makoto Nose
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Rin Shinozaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Fujii
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan.
| |
Collapse
|
9
|
George Warren W, Osborn M, Yates A, Wright K, E O'Sullivan S. The emerging role of fatty acid binding protein 5 (FABP5) in cancers. Drug Discov Today 2023:103628. [PMID: 37230284 DOI: 10.1016/j.drudis.2023.103628] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Fatty acid binding protein 5 (FABP5, or epidermal FABP) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. In patient-derived tumours, FABP5 expression is increased up to tenfold, often co-expressed with other cancer-related proteins. High tumoral FABP5 expression is associated with poor prognosis. FABP5 activates transcription factors (TFs) leading to increased expression of proteins involved in tumorigenesis. Genetic and pharmacological preclinical studies show that inhibiting FABP5 reduces protumoral markers, whereas elevation of FABP5 promotes tumour growth and spread. Thus, FABP5 might be a valid target for novel therapeutics. The evidence base is currently strongest for liver, prostate, breast, and brain cancers, and squamous cell carcinoma (SCC), which could represent relevant patient populations for any drug discovery programme. Teaser: This review presents the growing evidence that upregulated fatty acid binding protein 5 (FABP5) plays a role in the progression of multiple cancer types, and may represent a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Andy Yates
- Artelo Biosciences, Solana Beach, CA, USA
| | - Karen Wright
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | |
Collapse
|
10
|
Soyler D, Korucu EN, Menevse E, Azzawri AA, Kaya DE. Effects of Juglone and Curcumin Administration on Expression of FABP5 and FABP9 in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023. [DOI: 10.1134/s199074782310001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Hyder A. Naturally-occurring carboxylic acids from traditional antidiabetic plants as potential pancreatic islet FABP3 inhibitors. A molecular docking-aided study. Chem Biol Interact 2023; 372:110368. [PMID: 36709838 DOI: 10.1016/j.cbi.2023.110368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
The antidiabetic action of traditional plants is mostly attributed to their antioxidant and anti-inflammatory properties. These plants are still having some secrets, making them an attractive source that allows for investigating new drugs or uncovering precise pharmacologic antidiabetic functions of their constituents. In diabetes, which is a lipid disease, long-term exposure of pancreatic islet beta cells to fatty acids (FAs) increases basal insulin release, reduces glucose-stimulated insulin secretion, causes islet beta cell inflammation, failure and apoptosis. Pancreatic islet beta cells express fatty acid binding protein 3 (FABP3) that receives long-chain FAs and traffics them throughout different cellular compartments to be metabolized and render their effects. Inhibition of this FABP3 may retard FA metabolism and protect islet beta cells. Since FAs interact with FABPs by their carboxylic group, some traditionally-known antidiabetic plants were reviewed in the present study, searching for their components that have common features of FABP ligands, namely carboxylic group and hydrophobic tail. Many of these carboxylic acids were computationally introduced into the ligand-binding pocket of FABP3 and some of them exhibited FABP3 ligand possibilities. Among others, the naturally occurring ferulic, cleomaldeic, caffeic, sinapic, hydroxycinnamic, 4-p-coumaroylquinic, quinoline-2-carboxylic, chlorogenic, 6-hydroxykynurenic, and rosmarinic acids in many plants are promising candidates for being FABP3-specific inhibitors. The study shed light on repurposing these phyto-carboxylic acids to function as FABP inhibitors. However, more in-depth biological and pharmacological studies to broaden the understanding of this function are needed.
Collapse
Affiliation(s)
- Ayman Hyder
- Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
12
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
13
|
Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules 2022; 12:biom12050706. [PMID: 35625633 PMCID: PMC9138239 DOI: 10.3390/biom12050706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Fatty acid metabolism is closely linked to the progression of gastric cancer (GC), a very aggressive and life-threatening tumor. This study examines linked molecules, such as Sterol Regulatory Element-Binding Protein 1 (SREBP1), ATP Citrate Lyase (ACLY), Acetyl-CoA Synthases (ACSs), Acetyl-CoA Carboxylase (ACC), Fatty Acid Synthase (FASN), Stearoyl-CoA Desaturase 1 (SCD1), CD36, Fatty Acid Binding Proteins (FABPs), and Carnitine palmitoyltransferase 1 (CPT1), as well as their latest studies and findings in gastric cancer to unveil its core mechanism. The major enzymes of fatty acid de novo synthesis are ACLY, ACSs, ACC, FASN, and SCD1, while SREBP1 is the upstream molecule of fatty acid anabolism. Fatty acid absorption is mediated by CD36 and FABPs, and fatty acid catabolism is mediated by CPT1. If at all possible, we will discover novel links between fatty acid metabolism and a prospective gastric cancer target.
Collapse
|
14
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
Exploration of prognostic index based on immune-related genes in patients with liver hepatocellular carcinoma. Biosci Rep 2021; 40:225490. [PMID: 32579175 PMCID: PMC7327182 DOI: 10.1042/bsr20194240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
The present study aimed to screen the immune-related genes (IRGs) in patients with liver hepatocellular carcinoma (LIHC) and construct a synthetic index for indicating the prognostic outcomes. The bioinformatic analysis was performed on the data of 374 cancer tissues and 50 normal tissues, which were downloaded from TCGA database. We observed that 17 differentially expressed IRGs were significantly associated with survival in LIHC patients. These LIHC-specific IRGs were validated with function analysis and molecular characteristics. Cox analysis was applied for constructing a RiskScore for predicting the survival. The RiskScore involved six IRGs and corresponding coefficients, which was calculated with the following formula: RiskScore = [Expression level of FABP5 *(0.064)] + [Expression level of TRAF3 * (0.198)] + [Expression level of CSPG5 * (0.416)] + [Expression level of IL17D * (0.197)] + [Expression level of STC2 * (0.036)] + [Expression level of BRD8 * (0.140)]. The RiskScore was positively associated with the poor survival, which was verified with the dataset from ICGC database. Further analysis revealed that the RiskScore was independent of any other clinical feature, while it was linked with the infiltration levels of six types of immune cells. Our study reported the survival-associated IRGs in LIHC and then constructed IRGs-based RiskScore as prognostic indicator for screening patients with high risk of short survival. Both the screened IRGs and IRGs-based RiskScore were clinically significant, which may be informative for promoting the individualized immunotherapy against LIHC.
Collapse
|
16
|
Wang Y, Wahafu A, Wu W, Xiang J, Huo L, Ma X, Wang N, Liu H, Bai X, Xu D, Xie W, Wang M, Wang J. FABP5 enhances malignancies of lower-grade gliomas via canonical activation of NF-κB signaling. J Cell Mol Med 2021; 25:4487-4500. [PMID: 33837625 PMCID: PMC8093984 DOI: 10.1111/jcmm.16536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023] Open
Abstract
Low‐grade gliomas (LGGs) are grade III gliomas based on the WHO classification with significant genetic heterogeneity and clinical properties. Traditional histological classification of gliomas has been challenged by the improvement of molecular stratification; however, the reproducibility and diagnostic accuracy of LGGs classification still remain poor. Herein, we identified fatty acid binding protein 5 (FABP5) as one of the most enriched genes in malignant LGGs and elevated FABP5 revealed severe outcomes in LGGs. Functionally, lentiviral suppression of FABP5 reduced malignant characters including proliferation, cloning formation, immigration, invasion and TMZ resistance, contrarily, the malignancies of LGGs were enhanced by exogenous overexpression of FABP5. Mechanistically, epithelial‐mesenchymal transition (EMT) was correlated to FABP5 expression in LGGs and tumour necrosis factor α (TNFα)‐dependent NF‐κB signalling was involved in this process. Furthermore, FABP5 induced phosphorylation of inhibitor of nuclear factor kappa‐B kinase α (IKKα) thus activated nuclear factor kappa‐B (NF‐κB) signalling. Taken together, our study indicated that FABP5 enhances malignancies of LGGs through canonical activation of NF‐κB signalling, which could be used as individualized prognostic biomarker and potential therapeutic target of LGGs.
Collapse
Affiliation(s)
- Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Alafate Wahafu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longwei Huo
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongze Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Berberine Suppressed Tumor Growth through Regulating Fatty Acid Metabolism and Triggering Cell Apoptosis via Targeting FABPs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6195050. [PMID: 32328135 PMCID: PMC7168748 DOI: 10.1155/2020/6195050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Aim To further investigate the mechanism behind the antitumor properties of berberine regarding lipid metabolism. Methods Cell viability, proliferation, and apoptosis assays were performed to determine the antigrowth effects of berberine in vitro. Ectopic xenograft models in Balb/c nude mice were established to determine the antitumor effects of berberine in vivo. Results Berberine inhibited cell viability and proliferation of MGC803 human gastric cancer cell lines in a time- and dose-dependent manner. Berberine induced apoptosis of MGC803 and increased the apoptotic rate with higher doses. Berberine induced the accumulation of fatty acid of MGC803 and suppressed the protein expression of FABPs and PPARα. The FABP inhibitor BMS309403 recapitulated the effects of berberine on MGC803 cells. In the xenograft model, berberine significantly decreased the tumor volume and tumor weight and induced apoptosis in tumor tissues. Berberine significantly elevated the fatty acid content and inhibited the expression of FABPs and PPARα in the MGC803 xenograft models. Conclusion Berberine exerted anticancer effects on human gastric cancer both in vitro and in vivo by inducing apoptosis, which was due to the reduced protein expression of FABPs and the accumulation of fatty acid.
Collapse
|
18
|
The Damaging Effects of Pedunsaponin A on Pomacea canaliculata Hemocytes. Toxins (Basel) 2019; 11:toxins11070390. [PMID: 31277361 PMCID: PMC6669518 DOI: 10.3390/toxins11070390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pomacea canaliculata hemocytes are the main functional cells in the immune defense system, and hemocyte destruction disrupts the immune response mechanism of P. canaliculata, resulting in abnormal growth, development, reproduction, and even death. Our previous study found that Pedunsaponin A significantly affects P. canaliculata hemocyte structure. This study further investigated the damaging effects of Pedunsaponin A on P. canaliculata hemocytes. The cell mortality rate results showed that the hemocyte mortality was significantly increased after treatment with Pedunsaponin A, and the mortality rate exhibited a significant positive correlation with treatment time and dose. The membrane potential results showed that the cell membranes of P. canaliculata hemocytes exhibited time-dependent membrane depolarization after 40 mg/L Pedunsaponin A treatment. At 36 h, the cell depolarization rate in the Pedunsaponin A treatment group was 41.43%, which was significantly greater than the control group (6.24%). The cytoskeleton results showed that Pedunsaponin A led to disordered and dispersed arrangement of microfilaments and changes in the cytoskeletal structure. The apoptosis and cell cycle results showed that Pedunsaponin A induced apoptosis and influenced the cell cycle to some extent. These results showed that the cell membrane and cytoskeleton of P. canaliculata hemocytes were damaged after treatment with Pedunsaponin A, which led to an increase in cell mortality, dysfunction, cell cycle abnormalities and apoptosis. This study provides a foundation for further identification of the site of Pedunsaponin A activity on hemocytes.
Collapse
|
19
|
Lv Q, Wang G, Zhang Y, Han X, Li H, Le W, Zhang M, Ma C, Wang P, Ding Q. FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. Int J Oncol 2019; 54:1221-1232. [PMID: 30968158 PMCID: PMC6411348 DOI: 10.3892/ijo.2019.4721] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has been associated with one of the highest mortality rates among all cancers. Fatty acid binding proteins (FABPs) are 14‑15 kDa proteins that are highly abundant in the cytosol of most tissues. FABP5, a member of the FABP family, has been observed to promote tumor cell growth in numerous cancer types. In order to investigate the function of FABP5 in ccRCC cells in the present study, RNA sequencing data from The Cancer Genome Atlas were analyzed to determine the expression levels of FABP5 in ccRCC patient samples. Survival and Cox regression analyses were performed to measure the association between FABP5 expression and clinicopathological features of patients with ccRCC. Subsequent in vitro experiments downregulated or overexpressed FABP5 in Caki‑1 and 786O ccRCC cells using lentiviral vectors to evaluate cell proliferation ability, and a xenograft transplantation model was established to examine the effect of FABP5 on tumorigenesis in vivo. The results demonstrated that FABP5 expression was significantly upregulated in samples from patients with ccRCC when compared with normal tissue samples. High FABP5 expression was also significantly correlated with tumor and metastasis classifications and predicted poor survival in patients with ccRCC. In ccRCC cells, silencing of FABP5 significantly inhibited cell proliferation, while overexpression of FABP5 promoted cell proliferation when compared to the respective controls. In addition, treatment with the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K)/AKT inhibitor, LY294002, attenuated the pro‑proliferative effects of exogenous FABP5 expression in Caki‑1 and 786O cells. This indicated that the PI3K/AKT signaling pathway may be partially involved in the FABP5‑mediated increase in ccRCC cell proliferation. Furthermore, FABP5 was observed to regulate tumor growth in nude mice in vivo. In conclusion, the results of the present study suggest that FABP5 may exert a pro‑proliferative role in ccRCC and may be associated with malignant progression and tumorigenesis.
Collapse
Affiliation(s)
- Qi Lv
- Imaging Department of Tongji Hospital, Medical School of Tongji University, Shanghai 200065, P.R. China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yinan Zhang
- Department of Urology, Shandong Province affiliated Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Han
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haoming Li
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Le
- Imaging Department of Tongji Hospital, Medical School of Tongji University, Shanghai 200065, P.R. China
| | - Minguang Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Peijun Wang
- Imaging Department of Tongji Hospital, Medical School of Tongji University, Shanghai 200065, P.R. China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
20
|
Amiri M, Yousefnia S, Seyed Forootan F, Peymani M, Ghaedi K, Nasr Esfahani MH. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene 2018; 676:171-183. [PMID: 30021130 DOI: 10.1016/j.gene.2018.07.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
One of the most importantly involved pathways in cancer development is fatty-acid signaling pathway. Synthesized lipids as energetic sources are consumed by cancer cells for proliferation, growth, survival, invasion and angiogenesis. Fatty acids as signaling compounds regulate metabolic and transcriptional networks, survival pathways and inflammatory responses. Aggregation of fatty acids with fatty acid binding proteins (FABPs) facilitates their transportation to different cell organelles. FABPs, a group of lipid binding proteins modulate fatty acid metabolism, cell growth and proliferation and cancer development. They may be used as tumor marker in some cancers. FABPs are expressed in most malignancies such as prostate, breast, liver, bladder and lung cancer which are associated with the incidence, proliferation, metastasis, invasion of tumors. This review introduces several isoforms of FABPs (FABP1-12) and summarizes their function and their possible roles in cancer development through some proposed mechanisms.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Saghar Yousefnia
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Farzad Seyed Forootan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|