1
|
Mastrogeorgiou M, Chatzikalil E, Theocharis S, Papoudou-Bai A, Péoc'h M, Mobarki M, Karpathiou G. The immune microenvironment of cancer of the uterine cervix. Histol Histopathol 2024; 39:1245-1271. [PMID: 38483012 DOI: 10.14670/hh-18-727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
While several treatment choices exist for cervical cancer, such as surgical therapy, chemotherapy, and radiotherapy, some patients will still show poor prognosis. HPV infection is a principal factor for cervical cancer development, from early inflammation to proliferation, angiogenesis, and neoplastic growth. While HPV T-cell responses exist, the tumor seems to evade the immune system upon its tolerance. The latter suggests the existence of a confluent tumor microenvironment responsible for the evasion tactics employed by the neoplasm. Therefore, novel biomarkers governing prognosis and treatment planning must be developed, with several studies tackling the significance of the tumor microenvironment in the genesis, development, proliferation, and overall response of cervical cancer during neoplastic processes. This review aims to analyze and contemplate the characteristics of the tumor microenvironment and its role in prognosis, progression, evasion, and invasion, including therapeutic outcome and overall survival.
Collapse
Affiliation(s)
- Michail Mastrogeorgiou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michel Péoc'h
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mousa Mobarki
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Georgia Karpathiou
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
2
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania.,Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
4
|
Braile M, Fiorelli A, Sorriento D, Di Crescenzo RM, Galdiero MR, Marone G, Santini M, Varricchi G, Loffredo S. Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells 2021; 10:cells10082012. [PMID: 34440780 PMCID: PMC8392295 DOI: 10.3390/cells10082012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by epithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans, there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form (lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and progression of several experimental and human cancers. Primary human lung macrophages (HLMs), monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4, but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8 release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP, but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13, but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs. Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2), and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially expressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs, MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.
Collapse
Affiliation(s)
- Mariantonia Braile
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Rosa Maria Di Crescenzo
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Maria Rosaria Galdiero
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gianni Marone
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Mario Santini
- Department of Translational Medical and Surgical Science, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.F.); (R.M.D.C.); (M.S.)
| | - Gilda Varricchi
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Stefania Loffredo
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (M.B.); (M.R.G.); (G.M.)
- WAO Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| |
Collapse
|
5
|
Chan LKY, Lau TS, Chung KY, Tam C, Cheung TH, Yim SF, Lee JHS, Leung RWT, Qin J, Or YYY, Lo KW, Kwong J. Short-Form Thymic Stromal Lymphopoietin (sfTSLP) Is the Predominant Isoform Expressed by Gynaecologic Cancers and Promotes Tumour Growth. Cancers (Basel) 2021; 13:cancers13050980. [PMID: 33652749 PMCID: PMC7956741 DOI: 10.3390/cancers13050980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Cytokines are a group of small proteins in the body that play an important part in boosting the immune system. Thymic stromal lymphopoietin (TSLP) is a cytokine that plays an important role in the maturation of T cells. Two variants of TSLP, long-form (lfTSLP) and short-form (sfTSLP), have been found, however their roles in cancers are not known. In this study, we discovered that sfTSLP, but not lfTSLP, is predominantly expressed in ovarian and endometrial cancers. The switch that turns the sfTSLP gene on or off is controlled by external modifications of DNA. Our results also found that sfTSLP promotes tumour growth through activating several signal pathways in cancer cells. Abstract Thymic stromal lymphopoietin (TSLP) is an epithelial cell derived cytokine belonging to the IL-7 family and a key initiator of allergic inflammation. Two main isoforms of TSLP, classified as long- (lfTSLP) and short-form (sfTSLP), have been reported in human, but their expression patterns and role(s) in cancers are not yet clear. mRNA expression was examined by isoform-specific RT-PCR and RNA in situ hybridisation. Epigenetic regulation was investigated by chromatin immunoprecipitation-PCR and bisulfite sequencing. Tumour progression was investigated by gene overexpression, cell viability assay, cancer organoid culture and transwell invasion. Signals were investigated by proteome profiler protein array and RNA-sequencing. With the use of isoform-specific primers and probes, we uncovered that only sfTSLP was expressed in the cell lines and tumour tissues of human ovarian and endometrial cancers. We also showed the epigenetic regulation of sfTSLP: sfTSLP transcription was regulated by histone acetylation at promoters in ovarian cancer cells, whereas silencing of the sfTSLP transcripts was regulated by promoter DNA methylation in endometrial cancer cells. In vitro study showed that ectopically overexpressing sfTSLP promoted tumour growth but not invasion. Human phosphokinase array application demonstrated that the sfTSLP overexpression activated phosphorylation of multiple intracellular kinases (including GSK3α/β, AMPKα1, p53, AKT1/2, ERK1/2 and Src) in ovarian cancer cells in a context-dependent manner. We further investigated the impact of sfTSLP overexpression on transcriptome by RNA-sequencing and found that EFNB2 and PBX1 were downregulated in ovarian and endometrial cancer cells, suggesting their role in sfTSLP-mediated tumour growth. In conclusion, sfTSLP is predominantly expressed in ovarian and endometrial cancers and promotes tumour growth.
Collapse
Affiliation(s)
- Loucia Kit Ying Chan
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Tat San Lau
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Kit Ying Chung
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Chit Tam
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Tak Hong Cheung
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - So Fan Yim
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Jacqueline Ho Sze Lee
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
| | - Ricky Wai Tak Leung
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 510006, China; (R.W.T.L.); (J.Q.)
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 510006, China; (R.W.T.L.); (J.Q.)
| | - Yvonne Yan Yan Or
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (Y.Y.Y.O.); (K.W.L.)
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (Y.Y.Y.O.); (K.W.L.)
| | - Joseph Kwong
- Department of Obstetrics of Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.K.Y.C.); (T.S.L.); (K.Y.C.); (C.T.); (T.H.C.); (S.F.Y.); (J.H.S.L.)
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK
- Correspondence: ; Tel.: +852-3505-2801
| |
Collapse
|
6
|
Protti MP, De Monte L. Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and -Independent Mechanisms. Front Immunol 2020; 11:2088. [PMID: 33042121 PMCID: PMC7524868 DOI: 10.3389/fimmu.2020.02088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine originally cloned from a murine thymic stromal cell line, and subsequently a human homolog was identified using database search methods. Human TSLP is mostly expressed in epithelial cells, among which are keratinocytes as well as stromal cells such as fibroblasts and immune cells. Human TSLP was first described to activate myeloid dendritic cells, which prime naïve T helper cells to produce high concentrations of Th2 cytokines, thus representing a key cytokine in triggering dendritic cells-mediated allergic Th2 inflammation. TSLP and/or its receptor has been shown to be expressed in several tumor types, where TSLP expression is associated with functional activities that can be associated or not with the induction of a Th2-prone tumor microenvironment, i.e., Th2-dependent and Th2-independent mechanisms. These mechanisms involve tissue- and immune cell target-dependent tumor-promoting or tumor-suppressive functions in different or even the same tumor type. Here we report and discuss the Th2-dependent and Th2-independent roles of TSLP in cancer and possible therapeutic targeting.
Collapse
Affiliation(s)
- Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricerca a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricerca a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Guo L, Hua K. Cervical Cancer: Emerging Immune Landscape and Treatment. Onco Targets Ther 2020; 13:8037-8047. [PMID: 32884290 PMCID: PMC7434518 DOI: 10.2147/ott.s264312] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Immune cells are essential for defending the body’s balance and have increasingly been implicated in controlling tumor growth. In cervical cancer (CC), the immune landscape is extensively connected with human papillomavirus (HPV) status. Recent insights from studies have revealed that as a result of infection with HPV, immune cell populations such as lymphocytes or monocytes change during carcinogenesis. Immune therapy, in particular checkpoint inhibitors, those targeting PD-1 or PD-L1, has shown promising efficacy. This article reviews the immune landscape and immunotherapy of CC.
Collapse
Affiliation(s)
- Luopei Guo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Keqin Hua
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
8
|
Marković I, Savvides SN. Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Front Immunol 2020; 11:1557. [PMID: 32849527 PMCID: PMC7396566 DOI: 10.3389/fimmu.2020.01557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Thymic Stromal Lymphopoietin (TSLP) and Interleukin-7 (IL-7) are widely studied cytokines within distinct branches of immunology. On one hand, TSLP is crucially important for mediating type 2 immunity at barrier surfaces and has been linked to widespread allergic and inflammatory diseases of the airways, skin, and gut. On the other hand, IL-7 operates at the foundations of T-cell and innate lymphoid cell (ILC) development and homeostasis and has been associated with cancer. Yet, TSLP and IL-7 are united by key commonalities in their structure and the structural basis of the receptor assemblies they mediate to initiate cellular signaling, in particular their cross-utilization of IL-7Rα. As therapeutic targeting of TSLP and IL-7 via diverse approaches is reaching advanced stages and in light of the plethora of mechanistic and structural data on receptor signaling mediated by the two cytokines, the time is ripe to provide integrated views of such knowledge. Here, we first discuss the major pathophysiological roles of TSLP and IL-7 in autoimmune diseases, inflammation and cancer. Subsequently, we curate structural and mechanistic knowledge about receptor assemblies mediated by the two cytokines. Finally, we review therapeutic avenues targeting TSLP and IL-7 signaling. We envision that such integrated view of the mechanism, structure, and modulation of signaling assemblies mediated by TSLP and IL-7 will enhance and fine-tune the development of more effective and selective approaches to further interrogate the role of TSLP and IL-7 in physiology and disease.
Collapse
Affiliation(s)
- Iva Marković
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|
10
|
Zhu B, Liu Q, Han Q, Zeng B, Chen J, Xiao Q. Downregulation of Krüppel‑like factor 1 inhibits the metastasis and invasion of cervical cancer cells. Mol Med Rep 2018; 18:3932-3940. [PMID: 30132534 PMCID: PMC6131627 DOI: 10.3892/mmr.2018.9401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common malignancies that seriously threatens women's health. Krüppel‑like factors (KLFs) have been reported to be associated with the progression of cervical cancer. The role of KLF1 in cervical cancer, which still remains unclear, was investigated in the present study. The expression of KLF1 was detected in different cervical cell lines by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting. Cell proliferation, metastasis and invasion were respectively detected by Cell Counting Kit‑8, wound healing and transwell assays. Associated factor expression was also detected by RT‑qPCR and western blotting. In addition, the phosphorylation levels of phosphatidylinositol‑3‑kinase (PI3K) and protein kinase B (Akt) were determined by western blot analysis. The results revealed that KLF1 expression was promoted in SiHa, Caski and C4‑1 cervical cancer cells. However, KLF1 knockdown suppressed cell proliferation, metastasis and invasion in SiHa cervical cancer cells. KLF1 knockdown also inhibited the expressions of Ki67, metastasis‑associated antigen 1 and matrix metalloproteinase (MMP)‑2. KLF1 knockdown promoted the expressions of nonmetastatic clone 23 type 1 and tissue inhibitor of metalloproteinase‑2, and the expression of MMP‑9 was promoted slightly as well. In addition, KLF1 knockdown inhibited the PI3K/Akt signaling pathway. Hence, it was concluded that KLF1 promoted metastasis and invasion via the PI3K/Akt signaling pathway in cervical cancer cells.
Collapse
Affiliation(s)
- Bisheng Zhu
- Oncology Department, Xingning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Qisheng Liu
- Department of Gastroenterology, Xingning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Qi Han
- Oncology Department, Xingning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Bohang Zeng
- Oncology Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Jingqi Chen
- Oncology Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qiuju Xiao
- Oncology Department, Xingning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| |
Collapse
|
11
|
Vizio B, Boita M, Cristiano C, Mazibrada J, Bosco O, Novarino A, Prati A, Sciascia S, Rolla G, Ciuffreda L, Montrucchio G, Bellone G. Thymic stromal lymphopoietin in human pancreatic ductal adenocarcinoma: expression and prognostic significance. Oncotarget 2018; 9:32795-32809. [PMID: 30214685 PMCID: PMC6132354 DOI: 10.18632/oncotarget.25997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) has emerged as an important, but contradictory, player conditioning tumor growth. In certain contexts, by driving T helper (h) 2 responses via tumor-associated OX40 Ligand (OX40L)+ dendritic cells (DCs), TSLP may play a pro-tumorigenic role. The study elucidates the importance of TSPL in pancreatic ductal adenocarcinoma (PDAC), by analyzing: i) TSLP levels in PDAC cell-line supernatants and plasma from patients with locally-advanced/metastatic PDAC, pre- and post-treatment with different chemotherapeutic protocols, in comparison with healthy donors; ii) TSLP and OX40L expression in PDAC and normal pancreatic tissues, by immunohistochemistry; iii) OX40L expression on ex vivo-generated normal DCs in the presence of tumor-derived TSLP, by flow cytometry; iv) clinical relevance in terms of diagnostic and prognostic value and influence on treatment modality and response. Some PDAC cell lines, such as BxPC-3, expressed both TSLP mRNA and protein. Normal DCs, generated ex vivo in the presence of TSLP-rich-cell supernatants, displayed increased expression of OX40L, reduced by the addition of a neutralizing anti-TSLP polyclonal antibody. OX40L+ cells were detected in pancreatic tumor inflammatory infiltrates. Abnormally elevated TSLP levels were detected in situ in tumor cells and, systemically, in locally-advanced/metastatic PDAC patients. Of the chemotherapeutic protocols applied, gemcitabine plus oxaliplatin (GEMOX) significantly increased circulating TSLP levels. Elevated plasma TSLP concentration was associated with shorter overall survival and increased risk of poor outcome. Plasma TSLP measurement successfully discriminated PDAC patients from healthy controls. These data show that TSLP secreted by pancreatic cancer cells may directly impact PDAC biology and patient outcome.
Collapse
Affiliation(s)
- Barbara Vizio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Monica Boita
- Division of Allergy and Immunology, Department of Medical Science, Azienda Ospedaliera Ordine Mauriziano Umberto I, University of Turin, 10126 Turin, Italy
| | - Carmen Cristiano
- Department of Medical Oncology, Azienda Ospedaliera Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Jasenka Mazibrada
- Bradford Teaching Hospitals NHS Trust, Duckworth Ln, Bradford BD9 6RJ, United Kingdom
| | - Ornella Bosco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Novarino
- Department of Medical Oncology, Azienda Ospedaliera Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Adriana Prati
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases-Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital and University of Turin, 10154 Turin, Italy
| | - Giovanni Rolla
- Division of Allergy and Immunology, Department of Medical Science, Azienda Ospedaliera Ordine Mauriziano Umberto I, University of Turin, 10126 Turin, Italy
| | - Libero Ciuffreda
- Department of Medical Oncology, Azienda Ospedaliera Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | | | - Graziella Bellone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|