1
|
Hu X, Huang S, Ye S, Jiang J. The Natural Product Oridonin as an Anticancer Agent: Current Achievements and Problems. Curr Pharm Biotechnol 2024; 25:655-664. [PMID: 37605407 DOI: 10.2174/1389201024666230821110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has received a rising attention for its remarkable roles in cancer therapy. In recent years, increasing evidences have revealed that oridonin inhibits the occurrence and development of tumor cells through multiple mechanisms, including induction of apoptosis and autophagy, cell cycle arrest, and inhibition of angiogenesis as well as migration and invasion. In addition, several molecular signal targets have been identified, including ROS, EGFR, NF-κB, PI3K/Akt, and MAPK. In this paper, we review considerable knowledge about the molecular mechanisms and signal targets of oridonin, which has been studied in recent years. It is expected that oridonin may be developed as a novel anti-tumor herbal medicine in human cancer treatment.
Collapse
Affiliation(s)
- Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Sisi Huang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai, 200032, P.R. China
| | - Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| |
Collapse
|
2
|
Liu W, Wang X, Wang L, Mei Y, Yun Y, Yao X, Chen Q, Zhou J, Kou B. Oridonin represses epithelial-mesenchymal transition and angiogenesis of thyroid cancer via downregulating JAK2/STAT3 signaling. Int J Med Sci 2022; 19:965-974. [PMID: 35813296 PMCID: PMC9254367 DOI: 10.7150/ijms.70733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been reported to exert anticancer activity in various cancers. However, the molecular mechanism of oridonin in thyroid cancer has not yet been elucidated. In the present study, oridonin was found to significantly inhibit migration and invasion of thyroid cancer TPC-1 and BCPAP cells, as evidenced by wound healing assay, transwell migration assay and Matrigel invasion assay. In addition, oridonin could partially impede epithelial-mesenchymal transition by upregulating E-Cadherin expression and downregulating N-Cadherin and vimentin expressions in a concentration-dependent manner. Accumulating evidence indicated that JAK2 (Janus kinase-2)/STAT3 (Signal Transducer and Activator of Transcription 3) signaling pathway was associated with epithelial-mesenchymal transition. As expected, the protein levels of phosphorylated-JAK2 and phosphorylated-STAT3 were dramatically reduced upon oridonin treatment in thyroid cancer TPC-1 and BCPAP cells. Subsequently, the findings revealed that JAK2 overexpression could weaken the anti-metastatic effect and partially attenuate MET (mesenchymal-to-epithelial transition) by oridonin, while AG490, a JAK2 antagonist, enhanced the above process in thyroid cancer cells. The subsequent results showed that oridonin inhibited angiogenesis and VEGFA expression in thyroid cancer cells by tube formation assay, western blot and ELISA assay. Meanwhile, AG490 could further attenuate oridonin-treated VEGFA protein level. In addition, the in vivo results further confirmed that oridonin inhibited tumorigenicity in thyroid cancer xenograft. In conclusion, the results demonstrated that oridonin repressed metastatic phenotype, angiogenesis and modulated EMT (epithelial-mesenchymal transition) of thyroid cancer cells via the inactivation of JAK2/STAT3 signaling pathway, suggesting that JAK2 may be a novel therapeutic target of oridonin against thyroid cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xindi Wang
- Department of Clinical Medicine, Medical School of Xian Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Le Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Mei
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanning Yun
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710061, China
| | - Xiaobao Yao
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qian Chen
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinsong Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, China
| | - Bo Kou
- Department of Otorhinolaryngology-Head&Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
3
|
Zhu L, Ren S, Daniels MJ, Qiu W, Song L, You T, Wang D, Wang Z. Exogenous HMGB1 Promotes the Proliferation and Metastasis of Pancreatic Cancer Cells. Front Med (Lausanne) 2021; 8:756988. [PMID: 34805222 PMCID: PMC8595098 DOI: 10.3389/fmed.2021.756988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Exogenous HMGB1 plays a vital role in tumor recurrence, and HMGB1 is ubiquitous in the tumor microenvironment. However, the mechanism of action is still unclear. We investigated the role of exogenous HMGB1 in tumor proliferation and metastasis using human SW1990 and PANC-1 cells after radiotherapy and explored the possible molecular mechanism. Materials and Methods: Residual PANC-1 cells and SW1990 cells were isolated after radiotherapy. The supernatant after radiotherapy was collected. The relative expression of HMGB1 was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Electron microscope (EMS) was used to collect the images of pancreatic cancer cells pre and post radiotherapy treatment. The proliferation of pancreatic cancer cells which were treated with different radiation doses was measured by Carboxy Fluorescein Succinimidyl Ester (CFSE). The migration rates of pancreatic cancer cells were measured by wound healing assays. Subsequently, the expression of related proteins was detected by Western Blot. In vivo, the subcutaneous pancreatic tumor models of nude mice were established, and therapeutic capabilities were tested. Results: HMGB1 was detected in the supernatant of pancreatic cancer cells after radiotherapy. The results of CFSE showed that exogenous HMGB1 promotes the proliferation and metastasis of pancreatic cancer cells. The western blot results showed activation of p-GSK 3β and up-regulation of N-CA, Bcl-2, and Ki67 in response to HMGB1 stimulation, while E-CA expression was down-regulated in pancreatic cancer cells in response to HMGB1 stimulation. In vivo, ethyl pyruvate (EP, HMGB1 inhibitor) inhibits the growth of tumors and HMGB1 promotes the proliferation of tumors after radiation. Conclusion: Radiotherapy induces HMGB1 release into the extracellular space. Exogenous HMGB1 promotes the proliferation and metastasis of PANC-1 cells and SW1990 cells by activation of p-GSK 3β which is mediated by Wnt pathway.
Collapse
Affiliation(s)
- Li Zhu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Marcus J Daniels
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenli Qiu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian Song
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tao You
- Department of Radiotherapy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zhao X, Zhang Q, Wang Y, Li S, Yu X, Wang B, Wang X. Oridonin induces autophagy-mediated cell death in pancreatic cancer by activating the c-Jun N-terminal kinase pathway and inhibiting phosphoinositide 3-kinase signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1084. [PMID: 34422996 PMCID: PMC8339817 DOI: 10.21037/atm-21-2630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Oridonin is a diterpenoid isolated from Rabdosia rubescens that has potent anticancer activity. This study set out to investigate the antitumor effects of oridonin in pancreatic carcinoma (PC) and their underlying mechanisms. Methods To investigate the antitumor effects of oridonin, we developed an orthotopic C57BL/6 mouse model of PC. After successful establishment of the model, the mice were given a daily intraperitoneal injection of phosphate-buffered saline containing 0.1% dimethyl sulfoxide or oridonin for 2 weeks. In vitro experiments including MTT assay and flow cytometry were performed to examine cell viability and apoptosis. Panc-1 and Panc02 cells were transfected with a green fluorescent protein (GFP)-LC3 plasmid. After the cells had been treated with or without 20 μM oridonin and 10 μM 3-MA, the formation of GFP-LC3 puncta was detected by fluorescence microscopy. The levels of the autophagy-related proteins Beclin-1, LC3, and p62 were measured by western blotting. Results Oridonin inhibited the proliferation of PC cells and induced their apoptosis in vitro and in vivo. Treatment with oridonin also led to an increase in the quantity of LC3B II protein and upregulation of the p62 and Beclin-1 levels in PC cells. The effects of oridonin on PC cell proliferation, apoptosis, and autophagy were mediated via the simultaneous inhibition of the phosphoinositide 3-kinase pathway and activation of the c-Jun N-terminal kinase pathway. Conclusions Our study is the first to confirm the antitumor and autophagy-activating effects of oridonin on PC cells. In light of these results, oridonin may be a promising therapeutic agent for PC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Qi Zhang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuanyuan Wang
- Department of Pharmacology, Tianjin Children's Hospital, Tianjin, China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Botao Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| |
Collapse
|
5
|
Inhibition of Cell Proliferation and Metastasis by Scutellarein Regulating PI3K/Akt/NF-κB Signaling through PTEN Activation in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22168841. [PMID: 34445559 PMCID: PMC8396260 DOI: 10.3390/ijms22168841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 μM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) μM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.
Collapse
|
6
|
Li X, Zhang CT, Ma W, Xie X, Huang Q. Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2021; 12:645824. [PMID: 34295243 PMCID: PMC8289702 DOI: 10.3389/fphar.2021.645824] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oridonin, as a natural terpenoids found in traditional Chinese herbal medicine Isodon rubescens (Hemsl.) H.Hara, is widely present in numerous Chinese medicine preparations. The purpose of this review focuses on providing the latest and comprehensive information on the pharmacology, pharmacokinetics and toxicity of oridonin, to excavate the therapeutic potential and explore promising ways to balance toxicity and efficacy of this natural compound. Information concerning oridonin was systematically collected from the authoritative internet database of PubMed, Elsevier, Web of Science, Wiley Online Library and Europe PMC applying a combination of keywords involving "pharmacology," "pharmacokinetics," and "toxicology". New evidence shows that oridonin possesses a wide range of pharmacological properties, including anticancer, anti-inflammatory, hepatorenal activities as well as cardioprotective protective activities and so on. Although significant advancement has been witnessed in this field, some basic and intricate issues still exist such as the specific mechanism of oridonin against related diseases not being clear. Moreover, several lines of evidence indicated that oridonin may exhibit adverse effects, even toxicity under specific circumstances, which sparked intense debate and concern about security of oridonin. Based on the current progress, future research directions should emphasize on 1) investigating the interrelationship between concentration and pharmacological effects as well as toxicity, 2) reducing pharmacological toxicity, and 3) modifying the structure of oridonin-one of the pivotal approaches to strengthen pharmacological activity and bioavailability. We hope that this review can provide some inspiration for the research of oridonin in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan-Tao Zhang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Meng X, Liu K, Xie H, Zhu Y, Jin W, Lu J, Wang R. Endoplasmic reticulum stress promotes epithelial‑mesenchymal transition via the PERK signaling pathway in paraquat‑induced pulmonary fibrosis. Mol Med Rep 2021; 24:525. [PMID: 34036384 PMCID: PMC8170262 DOI: 10.3892/mmr.2021.12164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary fibrosis is the primary reason for mortality in patients with paraquat (PQ) poisoning. Our previous study demonstrated that epithelial-mesenchymal transition (EMT) had a role in PQ-induced pulmonary fibrosis. However, the role of endoplasmic reticulum (ER) stress in PQ-induced EMT remains clear. The present study aimed to determine the role of ER stress in EMT in PQ-induced pulmonary fibrosis. A549 and RLE-6TN cells were incubated with LY294002 (a PI3K inhibitor) or transfected with protein kinase RNA-like ER kinase (PERK) small interfering RNA (si) for 24 h prior to being exposed to PQ. Next, the expression levels of ER stress-related proteins, PI3K/AKT/GSK-3β signaling pathway-related proteins and EMT-related markers were analyzed by performing western blotting, reverse transcription-quantitative PCR and immunofluorescence assays. The results of the present study revealed that the protein expression levels of PERK, phosphorylated (p)-PERK, p-eukaryotic initiation factor 2 (eIF2)α were significantly upregulated in the PQ group, whereas p-PI3K, p-AKT and p-GSK-3β were significantly upregulated in the sicontrol + PQ group compared with the sicontrol group. In vitro, following transfection with siPERK or treatment with the PI3K inhibitor, the protein expression levels of E-cadherin (an epithelial marker) were upregulated, whereas the protein expression levels of α-SMA (a mesenchymal marker) were downregulated. Immunofluorescence analysis revealed that the levels of E-cadherin were markedly upregulated, whereas the levels of α-SMA were notably downregulated following transfection with siPERK compared with the sicontrol group. The results of wound healing assay demonstrated that cell migration in the siPERK + PQ group was markedly decreased compared with the sicontrol + PQ group. These indicated that PQ-induced EMT was suppressed after silencing PERK. The expression levels of p-GSK-3β, p-AKT and p-PI3K were also markedly downregulated in the siPERK + PQ group compared with the sicontrol + PQ group. In conclusion, the findings of the present study suggested that ER stress may promote EMT through the PERK signaling pathway in PQ-induced pulmonary fibrosis. Thus, ER stress may represent a potential therapeutic target for PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Kan Liu
- Department of Diving Medicine, Faculty of Nautical Medicine, Second Military Medical University, Shanghai 200082, P.R. China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Yong Zhu
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Wei Jin
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| |
Collapse
|
8
|
Valenti F, Falcone I, Ungania S, Desiderio F, Giacomini P, Bazzichetto C, Conciatori F, Gallo E, Cognetti F, Ciliberto G, Morrone A, Guerrisi A. Precision Medicine and Melanoma: Multi-Omics Approaches to Monitoring the Immunotherapy Response. Int J Mol Sci 2021; 22:3837. [PMID: 33917181 PMCID: PMC8067863 DOI: 10.3390/ijms22083837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.
Collapse
Affiliation(s)
- Fabio Valenti
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, Department of Research and Advanced Technologies, IRCCS-Regina Elena Institute, 00144 Rome, Italy;
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Patrizio Giacomini
- Oncogenomics and Epigenetics, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (P.G.)
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Enzo Gallo
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.F.); (C.B.); (F.C.); (F.C.)
| | - Gennaro Ciliberto
- Scientific Direction IRCSS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Morrone
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Antonino Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| |
Collapse
|
9
|
Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021; 26:775. [PMID: 33546106 PMCID: PMC7913218 DOI: 10.3390/molecules26040775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aula Ammar
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow City G61 1BD, UK;
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
10
|
Pagliara V, Donadio G, De Tommasi N, Amodio G, Remondelli P, Moltedo O, Dal Piaz F. Bioactive Ent-Kaurane Diterpenes Oridonin and Irudonin Prevent Cancer Cells Migration by Interacting with the Actin Cytoskeleton Controller Ezrin. Int J Mol Sci 2020; 21:E7186. [PMID: 33003361 PMCID: PMC7582544 DOI: 10.3390/ijms21197186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The ent-kaurane diterpene oridonin was reported to inhibit cell migration and invasion in several experimental models. However, the process by which this molecule exerts its anti-metastatic action has not been yet elucidated. In this article, we have investigated the anti-metastatic activity of Oridonin and of one homolog, Irudonin, with the aim to shed light on the molecular mechanisms underlying the biological activity of these ent-kaurane diterpenes. Cell-based experiments revealed that both compounds are able to affect differentiation and cytoskeleton organization in mouse differentiating myoblasts, but also to impair migration, invasion and colony formation ability of two different metastatic cell lines. Using a compound-centric proteomic approach, we identified some potential targets of the two bioactive compounds among cytoskeletal proteins. Among them, Ezrin, a protein involved in the actin cytoskeleton organization, was further investigated. Our results confirmed the pivotal role of Ezrin in regulating cell migration and invasion, and indicate this protein as a potential target for new anti-cancer therapeutic approaches. The interesting activity profile, the good selectivity towards cancer cells, and the lower toxicity with respect to Oridonin, all suggest that Irudonin is a very promising anti-metastatic agent.
Collapse
Affiliation(s)
- Valentina Pagliara
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.D.); (N.D.T.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.D.); (N.D.T.)
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (G.D.); (N.D.T.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy; (V.P.); (G.A.); (P.R.)
| |
Collapse
|
11
|
Hu X, Yuan L, Ma T. Mechanisms of JAK-STAT signaling pathway mediated by CXCL8 gene silencing on epithelial-mesenchymal transition of human cutaneous melanoma cells. Oncol Lett 2020; 20:1973-1981. [PMID: 32724443 PMCID: PMC7377181 DOI: 10.3892/ol.2020.11706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Effect of CXCL8 gene silencing-mediated JAK-STAT signaling pathway on epithelial-mesenchymal transition (EMT) of human cutaneous melanoma cells was explored. Eighty patients with cutaneous melanoma were enrolled in the study. Cells were transfected accordingly and divided into five groups: The blank group (human cutaneous melanoma cells), NC group (human cutaneous melanoma cells + blank vector plasmid transfection), CXCL8 siRNA group (human cutaneous melanoma cells + CXCL8 silent expression vector plasmid transfection), AG490 group (human cutaneous melanoma cells + JAK-STAT signal pathway inhibitor transfection), CXCL8 siRNA + AG490 group (human cutaneous melanoma cells + JAK-STAT signaling pathway inhibitor + CXCL8 silent expression vector plasmid transfection). The expression levels of CXCL8, JAK2, STAT3, epithelial cadherin (E-cadherin), neurotrophic cadherin (N-cadherin) and vimentin in tissues and cells were detected by RT-qPCR and western blot analysis. CCK-8 and flow cytometry were used to detect cell proliferation and apoptosis. Compared with adjacent normal tissues, the expression of E-cadherin in human cutaneous melanoma tissues was significantly decreased, whereas the expression of CXCL8, JAK2, STAT3, vimentin and N-cadherin was significantly increased (P<0.05). Compared with the blank group, CXCL8 siRNA group and CXCL8 siRNA + AG490 group had significantly lower expression of CXCL8 (P<0.05). Compared with the blank group, the expression levels of JAK2, STAT3, vimentin and N-cadherin in CXCL8 siRNA group, AG490 group and CXCL8 siRNA + AG490 group were decreased, the expression of E-cadherin was increased, the cell proliferation ability was decreased and apoptosis was increased (P<0.05). Compared with CXCL8 siRNA group, the expression of JAK2, STAT3, vimentin and N-cadherin in CXCL8 siRNA + AG490 group were significantly decreased, the expression of E-cadherin was significantly increased, cell proliferation ability was decreased and apoptosis was increased (P<0.05). In conclusion, CXCL8 gene expression silencing may inhibit EMT and cell proliferation while promoting cell apoptosis of human cutaneous melanoma cells by inhibiting the activation of JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaorui Hu
- Department of Burn and Plastic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Gansu 750001, P.R. China
| | - Lili Yuan
- Department of Plastic Surgery, Qingyang People's Hospital of Gansu Province, Qingyang, Gansu 745000, P.R. China
| | - Teng Ma
- Department of Traumatic Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Gansu 750001, P.R. China
| |
Collapse
|
12
|
Yuan L, Zhang K, Zhou MM, Wasan HS, Tao FF, Yan QY, Feng G, Tang YS, Shen MH, Ma SL, Ruan SM. Jiedu Sangen Decoction Reverses Epithelial-to-mesenchymal Transition and Inhibits Invasion and Metastasis of Colon Cancer via AKT/GSK-3β Signaling Pathway. J Cancer 2019; 10:6439-6456. [PMID: 31772677 PMCID: PMC6856737 DOI: 10.7150/jca.32873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023] Open
Abstract
Ethnopharmacology relevance: Jiedu Sangen Decoction (JSD), an empirical prescription of Traditional Chinese Medicine (TCM), has been reported to inhibit invasion and metastasis of colon cancer in our previous study. The aim of this study was to investigate the mechanism of JSD-triggered inhibition of invasion and metastasis in colon cancer. Methods: In vitro, AKT1 knockdown (si-AKT1) or overexpression (oe-AKT1) cells were successfully constructed both in SW480 and SW620 cell lines. Si-AKT1 and oe-AKT1 cells were then treated with or without JSD. Cell invasion, metastasis potential and expression of epithelial-mesenchymal transformation (EMT)-related and AKT1/GSK-3β proteins were then observed by wound healing, transwell, and western blot assays. In vivo, liver metastasis model mice were developed by inoculating SW480 cells. After JSD diet intervention, living fluorescence imaging and weight measurements were carried out to investigate JSD induced inhibition effects on liver metastasis of colon cancer. Immunohistochemistry and western blot assays were performed to observe tissue features and detect protein expression. Results: Invasion and metastasis potential, as well as EMT of colon cancer, can be markedly inhibited by JSD treatment or AKT1 knockdown, while enhanced by AKT1 overexpression. JSD-induced inhibition effects were significantly weakened when AKT1 was knocked down, while clearly enhanced when AKT1 was overexpressed. Additionally, JSD could lead to an increase in expression of E-cadherin, and a decrease in expression of N-cadherin, Vimentin, p-AKT1, AKT1, p- GSK-3β, Snail, Slug, and Twist in colon cancer cells. Conclusion: JSD reverses EMT and inhibits invasion and metastasis of colon cancer through the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Li Yuan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, china
| | - Kai Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Meng-Meng Zhou
- Department of traditional Chinese medicine, The First people's Hospital of Quzhou, 324000, Zhejiang, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Fang-Fang Tao
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Qing-Ying Yan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, china
| | - Guan Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, china
| | - Yin-Shan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Min-He Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Sheng-Lin Ma
- Department of Oncology, The Forth Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Shan-Ming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China,Department of Oncology, The Forth Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China,✉ Corresponding author: Shan-Ming Ruan; Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Shangcheng District, Hangzhou, Zhejiang, China; Zip code: 310006;
| |
Collapse
|
13
|
Berberine Inhibits Human Melanoma A375.S2 Cell Migration and Invasion via Affecting the FAK, uPA, and NF-κB Signaling Pathways and Inhibits PLX4032 Resistant A375.S2 Cell Migration In Vitro. Molecules 2018; 23:molecules23082019. [PMID: 30104528 PMCID: PMC6222729 DOI: 10.3390/molecules23082019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 01/12/2023] Open
Abstract
Many studies have demonstrated that berberine inhibited the cell migration and invasion in human cancer cell lines. However, the exact molecular mechanism of berberine inhibiting the cell migration and invasion of human melanoma A375.S2 and A375.S2/PLX (PLX4032 induced resistant A375.S2) skin cancer cells remains unknown. In this study, we investigated the anti-metastasis mechanisms of berberine in human melanoma cancer A375.S2 cells and A375.S2/PLX resistant cells in vitro. Berberine at low concentrations (0, 1, 1.5 and 2 μM) induced cell morphological changes and reduced the viable cell number and inhibited the mobility, migration, and invasion of A375.S2 cells that were assayed by wound healing and transwell filter. The gelatin zymography assay showed that berberine slightly inhibited MMP-9 activity in A375.S2 cells. Results from western blotting indicated that berberine inhibited the expression of MMP-1, MMP-13, E-cadherin, N-cadherin, RhoA, ROCK1, SOS-1, GRB2, Ras, p-ERK1/2, p-c-Jun, p-FAK, p-AKT, NF-κB, and uPA after 24 h of treatment, but increased the PKC and PI3K in A375.S2 cells. PLX4032 is an inhibitor of the BRAFV600E mutation and used for the treatment of cancer cells harboring activated BRAF mutations. Berberine decrease cell number and inhibited the cell mobility in the resistant A375.S2 (A375.S2/PLX, PLX4032 generated resistant A375.S2 cells). Based on these observations, we suggest that the potential of berberine as an anti-metastatic agent in melanoma that deserves to be investigated in more detail, including in vivo studies in future.
Collapse
|
14
|
Zhang C, Su L, Huang L, Song ZY. GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways. Int J Ophthalmol 2018; 11:1120-1128. [PMID: 30046527 DOI: 10.18240/ijo.2018.07.08] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
AIM To investigate the regulatory mechanism of glycogen synthase kinase 3β (GSK3β) in epithelial-mesenchymal transition (EMT) process after proliferative vitreoretinopathy (PVR) induction. METHODS Experimental PVR was induced by intravitreal injection of retinal pigment epithelium (RPE) cells in the eyes of rabbits. A PI3K/Akt inhibitor (wortmannin) and a GSK3β inhibitor (LiCl) were also injected at different time during PVR progress. Electroretinogram (ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and LiCl were evaluated by ERG and TdT-mediated dUTP nick-end labeling (TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3K/Akt pathways. CONCLUSION GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Li Su
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200000, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200000, China
| | - Li Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zheng-Yu Song
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.,Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| |
Collapse
|
15
|
Li C, Wang Q, Shen S, Wei X, Li G. Oridonin inhibits VEGF-A-associated angiogenesis and epithelial-mesenchymal transition of breast cancer in vitro and in vivo. Oncol Lett 2018; 16:2289-2298. [PMID: 30008931 PMCID: PMC6036431 DOI: 10.3892/ol.2018.8943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of mortality in patients with breast cancer and lacks effective therapeutic agents. Oridonin, an active diterpenoid compound isolated from Rabdosia rubescens, was identified to be the most potent anti-tumor ingredient. However, the molecular mechanisms responsible for its anti-metastatic effects remain unclear. In the present study, oridonin significantly suppressed the migration, invasion and adhesion of MDA-MB-231 and 4T1 breast cancer cells, and inhibited tube formation of human umbilical vein endothelial cells in a dose-dependent manner. The expression levels of epithelial-mesenchymal transition (EMT)-associated marker and the hypoxia inducible factor 1α (HIF-1α)/vascular endothelium growth factor (VEGF) signaling pathway mRNA and proteins were determined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively in vitro. The results demonstrated that oridonin effectively inhibited EMT as demonstrated by the significant increases in the expression levels of E-cadherin, and decreased expression of N-cadherin, Vimentin and Snail. In addition, oridonin exerted its anti-angiogenesis activity through significantly decreasing HIF-1α, VEGF-A and VEGF receptor-2 protein expression. Furthermore, oridonin was demonstrated to decrease the micro-vessel density as evidenced by the decreased expression of cluster of differentiation 31, a marker for neovasculature. In brief, oridonin inhibits tumor cell migration, invasion and adhesion, as well as tumor angiogenesis, which are mediated by suppressing EMT and the HIF-1α/VEGF signaling pathway. The results of the present study suggest that oridonin may be a promising anti-metastatic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qi Wang
- Department of Oncology, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, P.R. China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiaolu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Guoxia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|