1
|
Salimizadeh Z, Enferadi ST, Majidizadeh T, Mahjoubi F. Cytotoxicity of alkaloids isolated from Peganum harmala seeds on HCT116 human colon cancer cells. Mol Biol Rep 2024; 51:732. [PMID: 38872006 DOI: 10.1007/s11033-024-09655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3β) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3β and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3β and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Zahra Salimizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sattar Tahmasebi Enferadi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tayebeh Majidizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
2
|
Lin XH, Li DP, Liu ZY, Zhang S, Tang WQ, Chen RX, Weng SQ, Tseng YJ, Xue RY, Dong L. Six immune-related promising biomarkers may promote hepatocellular carcinoma prognosis: a bioinformatics analysis and experimental validation. Cancer Cell Int 2023; 23:52. [PMID: 36959615 PMCID: PMC10035283 DOI: 10.1186/s12935-023-02888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2023] [Indexed: 03/25/2023] Open
Abstract
Background Abnormal miRNA and mRNA expression and dysregulated immune microenvironment have been found to frequently induce the progression of hepatocellular carcinoma (HCC) in recent reports. In particular, the immune-related competing endogenous RNAs (ceRNA) mechanism plays a crucial role in HCC progression. However, the underlying mechanisms remain unclear. Methods Differentially expressed immune-related genes were obtained from the Immport, GEO, and TCGA databases. The mRNA and protein expression levels in HCC tissues and adjacent normal tissues were confirmed, and we further investigated the methylation levels of these biomarkers to explore their function. Then, the TIMER and TISCH databases were used to assess the relationship between immune infiltration and hub genes. Survival analysis and univariate and multivariate Cox models were used to evaluate the association between hub genes and HCC diagnosis. Hub gene expression was experimentally validated in six HCC cell lines and 15 HCC samples using qRT-PCR and immunohistochemistry. The hub genes were uploaded to DSigDB for drug prediction enrichment analysis. Results We identified that patients with abnormal miRNAs (hsa-miR-125b-5p and hsa-miR-21-5p) and their targeted genes (NTF3, PSMD14, CD320, and SORT1) had a worse prognosis. Methylation analysis of miRNA-targeted genes suggested that alteration of methylation levels is also a factor in the induction of tumorigenesis. We also found that the development of HCC progression caused by miRNA-mRNA interactions may be closely correlated with the infiltration of immunocytes. Moreover, the GSEA, GO, and KEGG analysis suggested that several common immune-related biological processes and pathways were related to miRNA-targeted genes. The results of qRT-PCR, immunohistochemistry, and western blotting were consistent with our bioinformatics results, suggesting that abnormal miRNAs and their targeted genes may affect HCC progression. Conclusions Briefly, our study systematically describes the mechanisms of miRNA-mRNA interactions in HCC and predicts promising biomarkers that are associated with immune filtration for HCC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-023-02888-9.
Collapse
Affiliation(s)
- Xia-Hui Lin
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| | - Dong-ping Li
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| | - Zhi-Yong Liu
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| | - Si Zhang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Wen-qing Tang
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| | - Rong-xin Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Shu-qiang Weng
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| | - Yu-jen Tseng
- grid.8547.e0000 0001 0125 2443Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| | - Ru-yi Xue
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| | - Ling Dong
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- grid.413087.90000 0004 1755 3939Shanghai Institute of Liver Disease, Shanghai, 200032 China
| |
Collapse
|
3
|
Vahedi MM, Shahini A, Mottahedi M, Garousi S, Shariat Razavi SA, Pouyamanesh G, Afshari AR, Ferns GA, Bahrami A. Harmaline exerts potentially anti-cancer effects on U-87 human malignant glioblastoma cells in vitro. Mol Biol Rep 2023; 50:4357-4366. [PMID: 36943605 DOI: 10.1007/s11033-023-08354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Harmaline is a β-carboline alkaloid that can be extracted from the seeds of Peganum harmala. Harmaline has been shown to exhibit a potent cytotoxic effect against tumor cells. In this study, the anti-glioblastoma activity of harmaline was investigated in vitro. METHODS AND RESULTS Cell viability, apoptosis, and cell cycle arrest were assessed in U-87 cells treated with harmaline at different doses. Reactive oxygen species (ROS) generation and the mRNA expression of apoptosis-associated genes were assessed. The anti-metastatic effect of harmaline on U-87 cells was evaluated by gelatin zymography assay where matrix metalloproteinase [MMP]-2/-9 enzymatic activity was measured, and the scratch assay was used to assess migratory responses. Flow cytometry demonstrated that harmaline could suppress the proliferation and induce sub-G1 cell cycle arrest and apoptotic cell death in glioblastoma cells. Harmaline treatment was also associated with an upregulation of the cell cycle-related genes, p21 and p53, and pro-apoptotic Bax, as well as the induction of ROS. The zymography assay indicated that the essential steps of metastasis were potently suppressed by harmaline through inhibiting the expression of MMP-2 and - 9. In addition, the migration of U-87 cells was significantly reduced after harmaline treatment. CONCLUSION Our data suggest a basis for further research of harmaline which has potential cytotoxic activities in glioblastoma cells; inducing cell cycle arrest and apoptosis, repression of migration, possibly invasion, and metastasis.
Collapse
Affiliation(s)
- Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Pouyamanesh
- Department of medical laboratory science, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Santos BWL, Moreira DC, Borges TKDS, Caldas ED. Components of Banisteriopsis caapi, a Plant Used in the Preparation of the Psychoactive Ayahuasca, Induce Anti-Inflammatory Effects in Microglial Cells. Molecules 2022; 27:2500. [PMID: 35458698 PMCID: PMC9025580 DOI: 10.3390/molecules27082500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Banisteriopsis caapi is used to prepare the psychoactive beverage ayahuasca, and both have therapeutic potential for the treatment of many central nervous system (CNS) conditions. This study aimed to isolate new bioactive compounds from B. caapi extract and evaluate their biological activity, and that of the known β-carboline components of the plant (harmine, harmaline, and tetrahydroharmine), in BV-2 microglial cells, the in vivo activation of which is implicated in the physiopathology of CNS disorders. B. caapi extract was fractionated using semipreparative liquid chromatography (HPLC-DAD) and the exact masses ([M + H]+m/z) of the compounds in the 5 isolated fractions were determined by high-resolution LC-MS/MS: F1 (174.0918 and 233.1289), F2 (353.1722), F3 (304.3001), F4 (188.1081), and F5 (205.0785). Harmine (75.5-302 µM) significantly decreased cell viability after 2 h of treatment and increased the number of necrotic cells and production of reactive oxygen species at equal or lower concentrations after 24 h. F4 did not impact viability but was also cytotoxic after 24 h. Most treatments reduced proinflammatory cytokine production (IL-2, IL-6, IL-17, and/or TNF), especially harmaline and F5 at 2.5 µM and higher concentrations, tetrahydroharmine (9.3 µM and higher), and F5 (10.7 µM and higher). The results suggest that the compounds found in B. caapi extract have anti-inflammatory potential that could be explored for the development of treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Beatriz Werneck Lopes Santos
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil;
| | - Daniel Carneiro Moreira
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (D.C.M.); (T.K.d.S.B.)
| | - Tatiana Karla dos Santos Borges
- Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (D.C.M.); (T.K.d.S.B.)
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil;
| |
Collapse
|
5
|
Harmine Augments the Cytotoxic and Anti-invasive Potential of Temozolomide Against Glioblastoma Multiforme Cells. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is considered the deadliest human cancer. Temozolomide is now a part of postresection standard chemotherapy for this type of cancer. Unfortunately, resistance to temozolomide is a major obstacle to treatment success. Combination therapy with natural anticancer agents increases the activity of temozolomide against cancer cells. Objectives: This study aimed to assess the effects of temozolomide in combination with harmine against GBM cells. Methods: Cancer cells were treated with temozolomide and/or harmine. After 24, 48, 72, and 96 h, the viability of the cells was assessed by the MTT test. The combination index and dose reduction index were determined by CompuSyn software. Tumor invasion potential was investigated by evaluating cell migration, invasion, and adhesion. The real-time PCR technique was done to study the expression pattern of two genes involved in cancer cell invasion. Statistical analysis was performed using one-way analysis of variance and Tukey’s post-hoc test, and differences were considered non-significant at P > 0.05. Results: After treatment with temozolomide, cell viability showed a concentration- and time-dependent decrease, and the cells’ survival rate decreased. The combination of temozolomide and harmine had a synergistic effect. Also, temozolomide and/or harmine treatment decreased cancer cells’ migration, invasion, and adhesion potentials, as well as the expression of metalloproteinases 2 and 9 in T98G cells. Conclusions: The combination of temozolomide and harmine can be promising for the successful treatment of GBM.
Collapse
|
6
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
7
|
Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers (Basel) 2020; 12:E2276. [PMID: 32823876 PMCID: PMC7463935 DOI: 10.3390/cancers12082276] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple dysregulated signaling pathways are implicated in the pathogenesis of cancer. The conventional therapies used in cancer prevention/treatment suffer from low efficacy, considerable toxicity, and high cost. Hence, the discovery and development of novel multi-targeted agents to attenuate the dysregulated signaling in cancer is of great importance. In recent decades, phytochemicals from dietary and medicinal plants have been successfully introduced as alternative anticancer agents due to their ability to modulate numerous oncogenic and oncosuppressive signaling pathways. Rutin (also known as rutoside, quercetin-3-O-rutinoside and sophorin) is an active plant-derived flavonoid that is widely distributed in various vegetables, fruits, and medicinal plants, including asparagus, buckwheat, apricots, apples, cherries, grapes, grapefruit, plums, oranges, and tea. Rutin has been shown to target various inflammatory, apoptotic, autophagic, and angiogenic signaling mediators, including nuclear factor-κB, tumor necrosis factor-α, interleukins, light chain 3/Beclin, B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein, caspases, and vascular endothelial growth factor. A comprehensive and critical analysis of the anticancer potential of rutin and associated molecular targets amongst various cancer types has not been performed previously. Accordingly, the purpose of this review is to present an up-to-date and critical evaluation of multiple cellular and molecular mechanisms through which the anticancer effects of rutin are known to be exerted. The current challenges and limitations as well as future directions of research are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Carly E. Wallace
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|