1
|
Mo M, Pan L, Deng L, Liang M, Xia N, Liang Y. Iron Overload Induces Hepatic Ferroptosis and Insulin Resistance by Inhibiting the Jak2/stat3/slc7a11 Signaling Pathway. Cell Biochem Biophys 2024; 82:2079-2094. [PMID: 38801513 DOI: 10.1007/s12013-024-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Recent studies showed that patients with iron overload had increased risk of insulin resistance or diabetes. Ferroptosis is a new type of cell death mainly caused by iron-dependent oxidative damage. In the present study, we investigated potential mechanisms of iron overload induced hepatic ferroptosis and insulin resistance through in vivo and in vitro experiments. In vivo, the mice models of iron overload were established by intraperitoneal injection of iron dextran. The changes of body weight, serum ferritin and blood glucose were measured. Hematoxylin-eosin (HE) and Perl's stainings were used to observe the pathological changes and iron deposition in the liver of mice. In vitro, HepG2 cells were treated with ferric ammonium citrate (FAC, 9 mmol/L, 24 h) to establish the cell models of iron overload. The labile iron pool, cell viability, glucose consumption and glycogen contents were measured. The ultrastructure of mitochondria was observed by transmission electron microscope (TEM). The malondialdehyde (MDA) and glutathione (GSH) kits were used to detect lipid peroxidation in liver tissues of mice and HepG2 cells. RT-PCR and Western blot were used to detect the mRNA and protein expression levels of ferroptosis factors and JAK2/STAT3 signaling pathway. In this study, we used the iron chelator deferasirox in mice and HepG2 cells. Iron overload caused weight loss, elevated serum ferritin, fasting blood glucose, fasting insulin, HOMA-IR, impaired glucose tolerance, and decreased insulin sensitivity in mice. HE staining and Perls staining showed clumps of iron deposition in the liver of iron overload mice. Iron overload could reduce the glucose consumption, increase MDA contents of HepG2 cells, while reduce glycogen and GSH contents in liver tissues of mice and HepG2 cells. TEM showed deletion of mitochondrial ridge and rupture of outer membrane in HepG2 cells with iron overload. Iron chelator deferasirox could significantly improve the above indicators, which might be related to the activation of JAK2/STAT3/SLC7A11 signaling pathway and hepatic ferroptosis. Iron overload could induce hepatic ferroptosis and insulin resistance by inhibiting the JAK2/STAT3/SLC7A11 signaling pathway, and the iron chelator deferasirox might improve hepatic insulin resistance induced by iron overload.
Collapse
Affiliation(s)
- Manqiu Mo
- Geriatric Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Deng
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Liang
- Geriatric Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ning Xia
- Geriatric Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Li Z, Liu J, Wang P, Zhang B, He G, Yang L. HAMP predicts a pivotal role in modulating the malignant behaviors of non-small cell lung cancer cells. Aging (Albany NY) 2024; 16:8524-8540. [PMID: 38787358 PMCID: PMC11164495 DOI: 10.18632/aging.205819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Hepcidin antimicrobial peptide (HAMP) is a small peptide hormone recognized for its role in iron metabolism and cancer treatment. The purpose of this study was to examine the influence of HAMP in NSCLC. METHODS The profile of NSCLC cells and tissues was characterized via HAMP. Gain- or loss-of-function cell models of HAMP were constructed, and CCK8, colony formation, and Transwell analyses were used to confirm the influence of HAMP on NSCLC cells. Upstream and downstream HAMP mechanisms in NSCLC were also analysed. Dual-luciferase reporter and pull-down assays confirmed the associations of miR-873-5p with HAMP, miR-873-5p, and the lncRNA KCNQ1OT1/SNHG14/XIST. Moreover, a xenograft model was established in nude mice for confirming the role of HAMP in NSCLC cell growth. RESULTS In addition, HAMP expression increased in NSCLC cells and tissues. In terms of cellular functions, the HAMP-overexpressing group exhibited elevated NSCLC cell proliferation, invasion, and migration. HAMP knockdown reversed these changes. Bioinformatics analysis indicated that miR-873-5p targeted HAMP, which affected the nuclear factor kappa B (NF-κB) pathway in NSCLC. HAMP activated the NF-κB pathway, which was negatively modulated by miR-873-5p. NF-κB inhibitor JSH-23 can partly suppress the proliferation, invasion, and migration in HAMP-overexpressed cells. Moreover, miR-873-5p was the target miRNA of long noncoding RNAs (lncRNAs), which included KCNQ1OT1, SNHG14, and XIST, and these three lncRNAs promoted HAMP. CONCLUSION Noncoding RNA-mediated HAMP promotes NSCLC cell proliferation, migration, and invasion by initiating the NF-κB pathway.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jinglei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Boyu Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guanghui He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liwei Yang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
3
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
The Current State of Chromatin Immunoprecipitation (ChIP) from FFPE Tissues. Int J Mol Sci 2022; 23:ijms23031103. [PMID: 35163027 PMCID: PMC8834906 DOI: 10.3390/ijms23031103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer cells accumulate epigenomic aberrations that contribute to cancer initiation and progression by altering both the genomic stability and the expression of genes. The awareness of such alterations could improve our understanding of cancer dynamics and the identification of new therapeutic strategies and biomarkers to refine tumor classification and treatment. Formalin fixation and paraffin embedding (FFPE) is the gold standard to preserve both tissue integrity and organization, and, in the last decades, a huge number of biological samples have been archived all over the world following this procedure. Recently, new chromatin immunoprecipitation (ChIP) techniques have been developed to allow the analysis of histone post-translational modifications (PTMs) and transcription factor (TF) distribution in FFPE tissues. The application of ChIP to genome-wide chromatin studies using real archival samples represents an unprecedented opportunity to conduct retrospective clinical studies thanks to the possibility of accessing large cohorts of samples and their associated diagnostic records. However, although recent attempts to standardize have been made, fixation and storage conditions of clinical specimens are still extremely variable and can affect the success of chromatin studies. The procedures introduced in the last few years dealt with this problem proponing successful strategies to obtain high-resolution ChIP profiles from FFPE archival samples. In this review, we compare the different FFPE-ChIP techniques, highlighting their strengths, limitations, common features, and peculiarities, as well as pitfalls and caveats related to ChIP studies in FFPE samples, in order to facilitate their application.
Collapse
|
5
|
Santos MP, Pereira JN, Delabio RW, Smith MAC, Payão SLM, Carneiro LC, Barbosa MS, Rasmussen LT. Increased expression of interleukin-6 gene in gastritis and gastric cancer. Braz J Med Biol Res 2021; 54:e10687. [PMID: 34008757 PMCID: PMC8130133 DOI: 10.1590/1414-431x2020e10687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Helicobacter pylori (H. pylori) induces an intense inflammatory response, mediated by proinflammatory cytokines, including interleukin (IL)-6 and its membrane receptor (IL-6R), which activates important signaling pathways in the development of gastric disease and cancer. We investigated the gene and protein expression of IL-6 and IL-6R and the influence of polymorphisms rs1800795, rs1800796, and rs1800797 on its gene expression together with H. pylori infection. Furthermore, an in-silico analysis was performed to support our results. Gastric biopsies were obtained from patients with gastric symptoms and patients with gastric cancer (GC) and were divided into groups (Control, Gastritis, and Cancer). H. pylori was detected by PCR. Real-time-qPCR was employed to determine gene expression, and western blot assay was used to analyze protein expression levels. PCR-RFLP was used to characterize IL-6 polymorphisms. Bioinformatics analyses were performed using the Gene Expression Omnibus (GEO) database and GEO2R to screen out differentially expressed genes (DEGs). H. pylori was detected in 43.3% of the samples. Statistically significant differences were found for IL-6 (P=0.0001) and IL-6R (P=0.0005) genes among the three groups, regardless of the presence of H. pylori. Among patients with H. pylori infection, the IL-6 and IL-6R gene and protein expressions were significantly increased, highlighting IL-6 gene overexpression in patients with GC. No statistically significant differences were found for the rs1800795, rs1800796, and rs1800797 polymorphisms compared to IL-6 gene expression. The results indicated that the IL-6 polymorphisms do not influence its expression, but IL-6 and IL-6R expression seems to be altered by the presence of H. pylori.
Collapse
Affiliation(s)
- M P Santos
- Laboratório de Genética, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - J N Pereira
- Laboratório de Genética, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - R W Delabio
- Laboratório de Genética, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - M A C Smith
- Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - S L M Payão
- Laboratório de Genética, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - L C Carneiro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - M S Barbosa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - L T Rasmussen
- Laboratório de Genética, Faculdade de Medicina de Marília, Marília, SP, Brasil
| |
Collapse
|
6
|
Fan Y, Liu B, Chen F, Song Z, Han B, Meng Y, Hou J, Cao P, Chang Y, Tan K. Hepcidin Upregulation in Lung Cancer: A Potential Therapeutic Target Associated With Immune Infiltration. Front Immunol 2021; 12:612144. [PMID: 33868231 PMCID: PMC8047218 DOI: 10.3389/fimmu.2021.612144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest death rate among cancers globally. Hepcidin is a fascinating regulator of iron metabolism; however, the prognostic value of hepcidin and its correlation with immune cell infiltration in lung cancer remain unclear. Here, we comprehensively clarified the prognostic value and potential function of hepcidin in lung cancer. Hepcidin expression was significantly increased in lung cancer. High hepcidin expression was associated with sex, age, metastasis, and pathological stage and significantly predicted an unfavorable prognosis in lung cancer patients. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) results suggested that hepcidin is involved in the immune response. Furthermore, hepcidin expression was positively correlated with the infiltration levels of immune cells and the expression of diverse immune cell marker sets. Importantly, hepcidin may affect prognosis partially by regulating immune infiltration in lung cancer patients. Hepcidin may serve as a candidate prognostic biomarker for determining prognosis associated with immune infiltration in lung cancer.
Collapse
Affiliation(s)
- Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bing Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fei Chen
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhiyuan Song
- Department of Neurosurgery, HanDan Central Hospital, Handan, China
| | - Bihui Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanxiu Meng
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiajie Hou
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
8
|
Wang P, Wang Y, Langley SA, Zhou YX, Jen KY, Sun Q, Brislawn C, Rojas CM, Wahl KL, Wang T, Fan X, Jansson JK, Celniker SE, Zou X, Threadgill DW, Snijders AM, Mao JH. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut 2019; 68:1942-1952. [PMID: 30842212 PMCID: PMC6839736 DOI: 10.1136/gutjnl-2018-316691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The Collaborative Cross (CC) is a mouse population model with diverse and reproducible genetic backgrounds used to identify novel disease models and genes that contribute to human disease. Since spontaneous tumour susceptibility in CC mice remains unexplored, we assessed tumour incidence and spectrum. DESIGN We monitored 293 mice from 18 CC strains for tumour development. Genetic association analysis and RNA sequencing were used to identify susceptibility loci and candidate genes. We analysed genomes of patients with gastric cancer to evaluate the relevance of genes identified in the CC mouse model and measured the expression levels of ISG15 by immunohistochemical staining using a gastric adenocarcinoma tissue microarray. Association of gene expression with overall survival (OS) was assessed by Kaplan-Meier analysis. RESULTS CC mice displayed a wide range in the incidence and types of spontaneous tumours. More than 40% of CC036 mice developed gastric tumours within 1 year. Genetic association analysis identified Nfκb1 as a candidate susceptibility gene, while RNA sequencing analysis of non-tumour gastric tissues from CC036 mice showed significantly higher expression of inflammatory response genes. In human gastric cancers, the majority of human orthologues of the 166 mouse genes were preferentially altered by amplification or deletion and were significantly associated with OS. Higher expression of the CC036 inflammatory response gene signature is associated with poor OS. Finally, ISG15 protein is elevated in gastric adenocarcinomas and correlated with shortened patient OS. CONCLUSIONS CC strains exhibit tremendous variation in tumour susceptibility, and we present CC036 as a spontaneous laboratory mouse model for studying human gastric tumourigenesis.
Collapse
Affiliation(s)
- Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,Clinical Laboratory, Second Hospital of Shandong University, Jinan, China
| | - Sasha A Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA,College of Marine Science, Shandong University, Weihai, China
| | - Kuang-Yu Jen
- Department of Pathology, University of California Davis Medical Center, Sacramento, California, USA
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Colin Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carolina M Rojas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Kimberly L Wahl
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
9
|
Liu J, Chen S, Ye X. The effect of red blood cell transfusion on plasma hepcidin and growth differentiation factor 15 in gastric cancer patients: a prospective study. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:466. [PMID: 31700902 DOI: 10.21037/atm.2019.08.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Hepcidin and growth differentiation factor 15 (GDF-15) have been reported to be highly expressed in various cancers. Serum hepcidin and GDF-15 levels were demonstrated to be potential prognostic markers in cancers. This study aims to evaluate the effect of red blood cell (RBC) transfusion on plasma hepcidin and GDF-15 in gastric cancer patients. Methods In this prospective study, 40 patients with gastric cancer were eligible for this study. Peripheral blood samples were obtained before and within 24 h after RBC transfusion. A routine blood test was performed before transfusion and within 24 h post-transfusion. Plasma hepcidin, GDF-15, interleukin 6 (IL-6) and erythropoietin were determined by ELISA. Results In patients with metastasis, plasma hepcidin (P=0.02), and GDF-15 (P=0.01) levels were higher than without metastasis. Plasma hepcidin was increased after RBC transfusion (P=0.001), while plasma erythropoietin was decreased after transfusion (P=0.03). However, RBC transfusion did not affect plasma GDF-15 (P=0.32) and IL-6 (P=0.12). The effect of RBC transfusion on variables did not differ between metastatic and non-metastatic patients. The mean percentage change of hepcidin in transfusion volume 4 unit (U) was more than 2 U. Conclusions RBC transfusion could increase plasma hepcidin and have no effect on plasma GDF-15 in gastric patients.
Collapse
Affiliation(s)
- Jingfu Liu
- Department of Blood Transfusion, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shan Chen
- Department of Blood Transfusion, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Xianren Ye
- Department of Blood Transfusion, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou 350014, China
| |
Collapse
|
10
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|