1
|
Qian Y, Yin J, Ni J, Chen X, Shen Y. A Network Pharmacology Method Combined with Molecular Docking Verification to Explore the Therapeutic Mechanisms Underlying Simiao Pill Herbal Medicine against Hyperuricemia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2507683. [PMID: 36817858 PMCID: PMC9935928 DOI: 10.1155/2023/2507683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 02/11/2023]
Abstract
Objective Hyperuricemia (HUA) is a common metabolic disease caused by disordered purine metabolism. We aim to reveal the mechanisms underlying the anti-HUA function of Simiao pill and provide therapeutic targets. Methods Simiao pill-related targets were obtained using Herbal Ingredients' Targets (HIT), Traditional Chinese Medicine Systems Pharmacology (TCMSP), and Traditional Chinese Medicine Integrated Database (TCMID). HUA-associated targets were retrieved from GeneCards, DisGeNET, and Therapeutic Targets Database (TTD). Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, ggraph and igraph R packages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfiler. The top 10 core targets were identified through cytoHubba. Molecular docking was conducted using PyMOL and AutoDock high-performance liquid chromatograph (HPLC) analysis was performed to identify effective compounds of Simiao pill. Results Simiao pill-HUA target network contained 80 targets. The key targets were mainly involved in inflammatory responses. Insulin (INS), tumor necrosis factor (TNF), interleukin-6 (IL6), interleukin 1 beta (IL1B), vascular endothelial growth factor A (VEGFA), leptin (LEP), signal transducer and activator of transcription 3 (STAT3), C-C motif chemokine ligand 2 (CCL2), interleukin-10 (IL10), and toll like receptor 4 (TLR4) were the top 10 targets in the PPI network. GO analysis demonstrated the main implication of the targets in molecular responses, production, and metabolism. KEGG analysis revealed that Simiao pill might mitigate HUA through advanced glycation end-product- (AGE-) receptor for AGE- (RAGE-) and hypoxia-inducible factor-1- (HIF-1-) associated pathways. IL1B, IL6, IL10, TLR4, and TNF were finally determined as the promising targets of Simiao pill treating HUA. Through molecular docking and HPLC analysis, luteolin, quercetin, rutaecarpine, baicalin, and atractylenolide I were the main active compounds. Conclusions Simiao pill can mitigate HUA by restraining inflammation, mediating AGE-RAGE- and HIF-1-related pathways, and targeting IL1B, IL6, IL10, TLR4, and TNF.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, China
| | - Juemin Ni
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Xiaona Chen
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Yan Shen
- Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| |
Collapse
|
2
|
Zhang H, Zhu K, Zhang X, Ding Y, Zhu B, Meng W, Zhang F. Rutaecarpine ameliorates lipopolysaccharide‑induced BEAS‑2B cell injury through inhibition of endoplasmic reticulum stress via activation of the AMPK/SIRT1 signaling pathway. Exp Ther Med 2022; 23:373. [PMID: 35495603 PMCID: PMC9019775 DOI: 10.3892/etm.2022.11300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2022] [Indexed: 11/05/2022] Open
Abstract
Rutaecarpine (RUT) is an alkaloid isolated from Tetradium ruticarpum, which has been reported to protect against several inflammatory diseases. However, to the best of our knowledge, the role of RUT in acute lung injury (ALI) and the specific molecular mechanism remain unknown. In the present study, an in vitro model of ALI was established in BEAS-2B cells by lipopolysaccharide (LPS) administration. Cell viability following RUT treatment with or without LPS stimulation was evaluated using a Cell Counting Kit-8 assay. The inflammatory response and oxidative stress were detected using ELISA kits and commercially available kits, respectively. TUNEL assay and western blotting were performed to assess cell apoptosis. The expression levels of endoplasmic reticulum (ER) stress-related proteins and AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling pathway-related proteins were measured by western blotting. The results revealed that RUT markedly improved cell viability after LPS treatment in a dose-dependent manner. In addition, RUT inhibited the LPS-induced inflammatory response and oxidative stress in BEAS-2B cells, and suppressed the LPS-induced apoptosis of BEAS-2B cells. Mechanistically, RUT alleviated ER stress by inhibiting the production of CHOP, glucose-regulated protein-78, caspase-12 and activating transcription factor 6. Additionally, western blotting demonstrated that RUT activated the phosphorylation of AMPK and SIRT1, which indicated the involvement of the AMPK/SIRT1 signaling pathway in the protective effect of RUT against LPS-induced lung injury. In conclusion, these results demonstrated that RUT mitigated LPS-induced lung cell injury by inhibiting ER stress via the activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Emergency Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Kun Zhu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xuefeng Zhang
- Department of Cardiothoracic Surgery, The Affiliated Heilongjiang Provincial Hospital of Harbin Institute of Technology, Harbin, Heilongjiang 150036, P.R. China
| | - Yihui Ding
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Bing Zhu
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Wen Meng
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Fan Zhang
- Department of Cardiothoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
3
|
Research Advances in Antitumor Mechanism of Evodiamine. J CHEM-NY 2022. [DOI: 10.1155/2022/2784257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evodiamine is a natural alkaloid extracted from Fructus Evodia. This bioactive alkaloid has been reported to have a wide range of biological activities, including anti-injury, antiobesity, vasodilator, and anti-inflammatory effects. In recent years, it has been found that evodiamine has tumor-suppressive effects on a variety of tumors. There is growing evidence that evodiamine can inhibit the rapid proliferation of tumor cells, induce cell cycle arrest at a certain phase, increase the incidence of apoptosis, promote autophagy, inhibit microangiogenesis and migration, and regulate immunotherapy. Evodiamine can inhibit Wnt/β-catenin, mTOR, NF-κB, PI3K/AKT, JAK-STAT, and other signaling pathways in various cancer cells, and it can significantly downregulate the expression of many tumor markers, such as VEGF and COX-2. These facts partially explain the antitumor mechanism of evodiamine. In this article, the antitumor mechanism of evodiamine was reviewed to provide the basis for its clinical application and therapeutic development in the future.
Collapse
|
4
|
Liu Y, Chen Y, Zhu R, Xu L, Xie HQ, Zhao B. Rutaecarpine Inhibits U87 Glioblastoma Cell Migration by Activating the Aryl Hydrocarbon Receptor Signaling Pathway. Front Mol Neurosci 2021; 14:765712. [PMID: 34955744 PMCID: PMC8696176 DOI: 10.3389/fnmol.2021.765712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive primary astrocytoma in adults. The high migration ability of the tumor cells is an important reason for the high recurrence rate and poor prognosis of glioblastoma. Recently, emerging evidence has shown that the migration ability of glioblastoma cells was inhibited upon the activation of aryl hydrocarbon receptor (AhR), suggesting potential anti-tumor effects of AhR agonists. Rutaecarpine is a natural compound with potential tumor therapeutic effects which can possibly bind to AhR. However, its effect on the migration of glioblastoma is unclear. Therefore, we aim to explore the effects of rutaecarpine on the migration of human glioblastoma cells U87 and the involvement of the AhR signaling pathway. The results showed that: (i) compared with other structural related alkaloids, like evodiamine and dehydroevodiamine, rutaecarpine was a more potent AhR activator, and has a stronger inhibitory effect on the glioblastoma cell migration; (ii) rutaecarpine decreased the migration ability of U87 cells in an AhR-dependent manner; (iii) AhR mediated the expression of a tumor suppressor interleukin 24 (IL24) induced by rutaecarpine, and AhR-IL24 axis was involved in the anti-migratory effects of rutaecarpine on the glioblastoma. Besides IL24, other candidates AhR downstream genes both associated with cancer and migration were proposed to participate in the migration regulation of rutaecarpine by RNA-Seq and bioinformatic analysis. These data indicate that rutaecarpine is a naturally-derived AhR agonist that could inhibit the migration of U87 human glioblastoma cells mostly via the AhR-IL24 axis.
Collapse
Affiliation(s)
- Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zou T, Zeng C, Qu J, Yan X, Lin Z. Rutaecarpine Increases Anticancer Drug Sensitivity in Drug-Resistant Cells through MARCH8-Dependent ABCB1 Degradation. Biomedicines 2021; 9:1143. [PMID: 34572328 PMCID: PMC8466742 DOI: 10.3390/biomedicines9091143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
The overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) subfamily B member 1 (ABCB1; P-glycoprotein; MDR1) in some types of cancer cells is one of the mechanisms responsible for the development of multidrug resistance (MDR), which leads to the failure of chemotherapy. Therefore, it is important to inhibit the activity or reduce the expression level of ABCB1 to maintain an effective intracellular level of chemotherapeutic drugs. In this study, we found that rutaecarpine, a bioactive alkaloid isolated from Evodia Rutaecarpa, has the capacity to reverse ABCB1-mediated MDR. Our data indicated that the reversal effect of rutaecarpine was related to the attenuation of the protein level of ABCB1. Mechanistically, we demonstrated that ABCB1 is a newly discovered substrate of E3 ubiquitin ligase membrane-associated RING-CH 8 (MARCH8). MARCH8 can interact with ABCB1 and promote its ubiquitination and degradation. In short, rutaecarpine increased the degradation of ABCB1 protein by upregulating the protein level of MARCH8, thereby antagonizing ABCB1-mediated MDR. Notably, the treatment of rutaecarpine combined with other anticancer drugs exhibits a therapeutic effect on transplanted tumors. Therefore, our study provides a potential chemotherapeutic strategy of co-administrating rutaecarpine with other conventional chemotherapeutic agents to overcome MDR and improve therapeutic effect.
Collapse
Affiliation(s)
- Tingting Zou
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Junyan Qu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| |
Collapse
|
6
|
Song HK, Noh EM, Kim JM, You YO, Kwon KB, Lee YR. Evodiae fructus Extract Inhibits Interleukin-1 β-Induced MMP-1, MMP-3, and Inflammatory Cytokine Expression by Suppressing the Activation of MAPK and STAT-3 in Human Gingival Fibroblasts In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5858393. [PMID: 34504537 PMCID: PMC8423542 DOI: 10.1155/2021/5858393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Periodontitis is a Gram-negative bacterial infectious disease. Numerous inflammatory cytokines, including interleukin-1β (IL-1β), regulate periodontitis pathophysiology and cause periodontal tissue destruction. In human gingival fibroblasts (HGFs), IL-1β stimulates the production of matrix metalloproteinases (MMPs) and proinflammatory cytokines via various mechanisms. Several transcription factors, such as signal transducer and activator of transcription 3 (STAT-3), activator protein 1 (AP-1), and nuclear factor-κB (NF-κB), regulate gene expression. Mitogen-activated protein kinases (MAPKs) regulate these transcription factors. However, the MAPK/STAT-3 activation signal in HGFs is unknown. We investigated the potential inhibitory effects of the extract of Evodiae fructus (EFE), the dried, ripe fruit of Evodia rutaecarpa, on MMP and proinflammatory cytokine expression in IL-1β-stimulated HGFs. EFE inhibited the expression of MMP-1, MMP-3, and proinflammatory cytokines (TNF-α, IL-6, and IL-8) in IL-1β-stimulated HGFs through the inhibition of IL-1β-induced MAPK/STAT-3 activation. Also, these results suggest that the EFE may be a useful for the bioactive material for oral care.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry and Institute of Biomaterials, Implant School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk-do 560-182, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry and Institute of Biomaterials, Implant School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| | - Kang-Beom Kwon
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry and Institute of Biomaterials, Implant School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| |
Collapse
|
7
|
Comparing the preventive effect of sodium hydrosulfide, leptin, and curcumin against L-arginine induced acute pancreatitis in rats: role of corticosterone and inducible nitric oxide synthase. Endocr Regul 2020; 53:221-230. [PMID: 31734652 DOI: 10.2478/enr-2019-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Acute pancreatitis (AP) is a life-threatening condition. Using antioxidants in AP is insufficient and conflicting. Therefore, this study compared the effect of hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS), leptin or curcumin pretreatment on AP induced by L-arginine. METHODS Forty adult male rats were used and classified into: 1) control; 2) AP group [each rat was intraperitoneally (i.p.) injected with 2 doses of L-arginine of 250 mg/100 g body weight (b.w.) with an interval of 1 h]; 3) NaHS+AP group (each rat was i.p. injected with 10 mg/kg b.w. of NaHS 1 h before induction of AP); 4) leptin+AP group (each rat was pretreated with 10 μg/kg b.w. of leptin 30 min before induction of AP; and 5) curcumin+AP group (in which rats were i.p. injected with 150 mg/kg b.w. of curcumin 30 min before induction of AP). Serum amylase, lipase, nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and corticosterone (CORT) levels were assayed. In addition, pancreatic tissues were obtained for histopathological examination and malondialde-hyde (MDA), total antioxidant capacity (TAC), and inducible nitric oxide synthase (iNOS) levels were measured. RESULTS All AP treated groups showed significant decrease in serum levels of pancreatic enzymes, NO, and TNF-α, and pancreatic MDA and iNOS levels, while TAC levels were significantly increased. NaHS caused more limitation of inflammation than leptin and curcumin by affecting iNOS. Leptin was more potent than curcumin due to the stimulatory effect of leptin on glucocorticoid release to counteract inflammation. CONCLUSIONS NaHS was more effective in AP amelioration than the leptin and curcumin.
Collapse
|
8
|
Han M, Hu L, Chen Y. Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury. Drug Des Devel Ther 2019; 13:2923-2931. [PMID: 31692511 PMCID: PMC6708397 DOI: 10.2147/dddt.s216156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion (CI/R) injury is a more serious brain injury caused by the recovery of blood supply after cerebral ischemia for a certain period of time. Rutaecarpine (Rut) is an alkaloid isolated from Evodia officinalis with various biological activities. Previous studies have shown that Rut has a certain protective effect on ischemic brain injury, but the specific molecular mechanism is still unknown. METHODS In this study, a rat model of CI/R was established to explore the effects and potential molecular mechanisms of Rut on CI/R injury in rats. RESULTS The results showed that Rut alleviated neuronal injury induced by CI/R in a dose-dependent manner. Besides, Rut inhibited neuronal apoptosis by inhibiting the activation of caspase 3 and the expression of Bax. In addition, Rut alleviated the inflammatory response and oxidative stress caused by CI/R through inhibiting the production of pro-inflammatory factors (IL-6 and IL-1β), lactate dehydrogenase (LDH), malondialdehyde (MDA) and ROS, and increased the levels of anti-inflammatory factors (IL-4 and IL-10) and superoxide dismutase (SOD). Biochemically, Western blot analyses showed that Rut inhibited the phosphorylation of ERK1/2 and promoted the expression of nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway-related proteins (Nrf2, heme oxygenase 1 (HO-1) and NAD (P) H-quinone oxidoreductase 1) in a dose-dependent manner. These results show that Rut may alleviate brain injury induced by CI/R by regulating the expression of ERK1/2 and the activation of Nrf2/HO-1 pathway. CONCLUSION In conclusion, these results suggest that Rut may be used as an effective therapeutic agent for damage caused by CI/R.
Collapse
Affiliation(s)
- Meiyu Han
- Department of Internal Medicine, The Second People’s Hospital of Dongying City, Dongying City, Shandong Province257335, People’s Republic of China
| | - Lin Hu
- Department of Critical Care Medicine ICU, Zoucheng People’s Hospital, Zoucheng, Shandong Province273500, People’s Republic of China
| | - Yang Chen
- Department of Internal Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai201399, People’s Republic of China
| |
Collapse
|
9
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance. Int J Mol Sci 2019; 20:E2794. [PMID: 31181644 PMCID: PMC6600324 DOI: 10.3390/ijms20112794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease associated with high morbidity and mortality. Clinical studies can provide some data concerning the etiology, pathophysiology, and outcomes of this disease. However, the study of early events and new targeted therapies cannot be performed on humans due to ethical reasons. Experimental murine models can be used in the understanding of the pancreatic inflammation, because they are able to closely mimic the main features of human AP, namely their histologic glandular changes and distant organ failure. These models continue to be important research tools for the reproduction of the etiological, environmental, and genetic factors associated with the pathogenesis of this inflammatory pathology and the exploration of novel therapeutic options. This review provides an overview of several murine models of AP. Furthermore, special focus is made on the most frequently carried out models, the protocols used, and their advantages and limitations. Finally, examples are provided of the use of these models to improve knowledge of the mechanisms involved in the pathogenesis, identify new biomarkers of severity, and develop new targeted therapies.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - António Gouveia
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal.
| |
Collapse
|