1
|
Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity. DISEASE MARKERS 2022; 2022:1612348. [PMID: 36419843 PMCID: PMC9678481 DOI: 10.1155/2022/1612348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The clinical application of cisplatin is limited by its adverse events, of which nephrotoxicity is the most commonly observed. In a cisplatin-induced pathological response, oxidative stress is one of the upstream reactions which inflicts different degrees of damages to the intracellular material components. Reactive oxygen species (ROS) are also one of the early signaling molecules that subsequently undergo a series of pathological reactions, such as apoptosis and necrosis. This review summarizes the mechanism of intracellular ROS generation induced by cisplatin, mainly from the consumption of endogenous antioxidants, destruction of antioxidant enzymes, induction of mitochondrial crosstalk between the endoplasmic reticulum by ROS and Ca2+, and destruction of the cytochrome P450 (CYP) system in the endoplasmic reticulum, all of which result in excessive accumulation of intracellular ROS and oxidative stress. In addition, studies demonstrated that natural antioxidants can protect against the cisplatin-induced nephrotoxicity, by reducing or even eliminating excess free radicals and also affecting other nonredox pathways. Therefore, this review on the one hand provides theoretical support for the research and clinical application of natural antioxidants and on the other hand provides a new entry point for the detailed mechanism of cisplatin nephrotoxicity, which may lay a solid foundation for the future clinical use of cisplatin.
Collapse
|
2
|
Johan AN, Li Y. Development of Photoremovable Linkers as a Novel Strategy to Improve the Pharmacokinetics of Drug Conjugates and Their Potential Application in Antibody-Drug Conjugates for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:655. [PMID: 35745573 PMCID: PMC9230074 DOI: 10.3390/ph15060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Although there have been extensive research and progress on the discovery of anticancer drug over the years, the application of these drugs as stand-alone therapy has been limited by their off-target toxicities, poor pharmacokinetic properties, and low therapeutic index. Targeted drug delivery, especially drug conjugate, has been recognized as a technology that can bring forth a new generation of therapeutics with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate is of essential importance because it impacts the circulation time of the conjugate and the release of the drug for full activity at the target site. Recently, the light-triggered linker has attracted a lot of attention due to its spatiotemporal controllability and attractive prospects of improving the overall pharmacokinetics of the conjugate. In this paper, the latest developments of UV- and IR-triggered linkers and their application and potential in drug conjugate development are reviewed. Some of the most-well-researched photoresponsive structural moieties, such as UV-triggered coumarin, ortho-nitrobenzyl group (ONB), thioacetal ortho-nitrobenzaldehyde (TNB), photocaged C40-oxidized abasic site (PC4AP), and IR-triggered cyanine and BODIPY, are included for discussion. These photoremovable linkers show better physical and chemical stabilities and can undergo rapid cleavage upon irradiation. Very importantly, the drug conjugates containing these linkers exhibit reduced off-target toxicity and overall better pharmacokinetic properties. The progress on photoactive antibody-drug conjugates, such as antibody-drug conjugates (ADC) and antibody-photoabsorber conjugate (APC), as precision medicine in clinical cancer treatment is highlighted.
Collapse
Affiliation(s)
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
3
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Fontana F, Marzagalli M, Raimondi M, Zuco V, Zaffaroni N, Limonta P. δ-Tocotrienol sensitizes and re-sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis. Cell Prolif 2021; 54:e13111. [PMID: 34520051 PMCID: PMC8560608 DOI: 10.1111/cpr.13111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Among gynaecologic malignancies, ovarian cancer (OC) represents the leading cause of death for women worldwide. Current OC treatment involves cytoreductive surgery followed by platinum-based chemotherapy, which is associated with severe side effects and development of drug resistance. Therefore, new therapeutic strategies are urgently needed. Herein, we evaluated the anti-tumour effects of Vitamin E-derived δ-tocotrienol (δ-TT) in two human OC cell lines, IGROV-1 and SKOV-3 cells. MATERIALS AND METHODS MTT and Trypan blue exclusion assays were used to assess δ-TT cytotoxicity, alone or in combination with other molecules. δ-TT effects on cell cycle, apoptosis, ROS generation and MAPK phosphorylation were investigated by flow cytometry, Western blot and immunofluorescence analyses. The synergism between δ-TT and chemotherapy was evaluated by isobologram analysis. RESULTS We demonstrated that δ-TT could induce cell cycle block at G1-S phase and mitochondrial apoptosis in OC cell lines. In particular, we found that the proapoptotic activity of δ-TT correlated with mitochondrial ROS production and subsequent JNK and p38 activation. Finally, we observed that the compound was able to synergize with cisplatin, not only enhancing its cytotoxicity in IGROV-1 and SKOV-3 cells but also re-sensitizing IGROV-1/Pt1 cell line to its anti-tumour effects. CONCLUSIONS δ-TT triggers G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis in OC cells and sensitizes them to platinum treatment, thus representing an interesting option for novel chemopreventive/therapeutic strategies for OC.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zuco
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Sazonova EV, Kopeina GS, Imyanitov EN, Zhivotovsky B. Platinum drugs and taxanes: can we overcome resistance? Cell Death Discov 2021; 7:155. [PMID: 34226520 PMCID: PMC8257727 DOI: 10.1038/s41420-021-00554-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer therapy is aimed at the elimination of tumor cells and acts via the cessation of cell proliferation and induction of cell death. Many research publications discussing the mechanisms of anticancer drugs use the terms "cell death" and "apoptosis" interchangeably, given that apoptotic pathways are the most common components of the action of targeted and cytotoxic compounds. However, there is sound evidence suggesting that other mechanisms of drug-induced cell death, such as necroptosis, ferroptosis, autophagy, etc. may significantly contribute to the fate of cancer cells. Molecular cross-talks between apoptotic and nonapoptotic death pathways underlie the successes and the failures of therapeutic interventions. Here we discuss the nuances of the antitumor action of two groups of the widely used anticancer drugs, i.e., platinum salts and taxane derivatives. The available data suggest that intelligent interference with the choice of cell death pathways may open novel opportunities for cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia.
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia.
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
6
|
Wang Z, Liu H, Hu Q, Shi L, Lü M, Deng M, Luo G. Cardamonin inhibits the progression of oesophageal cancer by inhibiting the PI3K/AKT signalling pathway. J Cancer 2021; 12:3597-3610. [PMID: 33995637 PMCID: PMC8120183 DOI: 10.7150/jca.55519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Oesophageal cancer is the most common malignant tumour with a poor prognosis, and the current treatment methods are limited. Therefore, identifying effective treatment methods has become a research hotspot. Cardamonin (CAR) is a natural chalcone compound and has been reported to play an anticancer role in several cancers. However, its function in oesophageal cancer and the possible underlying mechanism are still unclear. The purpose of this study was to demonstrate the anticancer effect of CAR on oesophageal cancer in vivo and in vitro and to explore the underlying mechanism. Materials and Methods: MTT, crystal violet, and colony formation assays were used to detect oesophageal cancer cell proliferation. The effects of CAR on oesophageal cancer cell migration and invasion were detected by wound healing assay and Transwell assay. Hoechst 33258 staining and flow cytometry were used to detect cell apoptosis. Protein expression levels were detected by Western blot. A tumour xenograft model was established to further test the effect of CAR on the growth of oesophageal cancer in vivo. Results: The results showed that CAR inhibited the proliferation, migration, and invasion of oesophageal cancer cells in a concentration-dependent manner and induced apoptosis. Furthermore, the Western blot assay showed that CAR could suppress metastasis by inhibiting epithelial-mesenchymal transition (EMT) as indicated by downregulated expression of the mesenchymal markers N-cadherin and vimentin, the EMT transcription factor Snail, and matrix metalloproteinases (MMPs) and upregulated expression of the epithelial marker E-cadherin. CAR was associated with upregulation of the pro-apoptotic proteins Bax and Bad and downregulation of the anti-apoptotic protein Bcl-2 and triggered the mitochondrial apoptosis pathway, which in turn promoted caspase-3 activation and subsequent cleavage of PARP; however, the mitochondria-related apoptotic effects induced by CAR were blocked by caspase inhibitor Z-VAD-FMK pretreatment, which prevented programmed cell death triggered by CAR. In addition, CAR reduced the phosphorylation level of downstream effector molecules of phosphatidylinositol 3 kinase (PI3K) in a dose-dependent manner, and treatment with the PI3K agonist 740Y-P could partially reverse the anticancer effect of CAR, demonstrating that CAR played an antitumour role by inhibiting the PI3K/AKT signalling pathway in oesophageal cancer cells. Moreover, the EC9706 xenograft model further confirmed that CAR can significantly inhibit tumour growth in vivo. Conclusion: In summary, CAR exhibited a strong anticancer effect on human oesophageal cancer cells and promoted apoptosis by inhibiting the PI3K/AKT signalling pathway, suggesting that CAR can be used as new strategy for oesophageal cancer treatment.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hui Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qing Hu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lei Shi
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Muhan Lü
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingming Deng
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gang Luo
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
| |
Collapse
|
7
|
Ramchandani S, Naz I, Dhudha N, Garg M. An overview of the potential anticancer properties of cardamonin. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:413-426. [PMID: 36046386 PMCID: PMC9400778 DOI: 10.37349/etat.2020.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of mortality, contributing to 9.6 million deaths globally in 2018 alone. Although several cancer treatments exist, they are often associated with severe side effects and high toxicities, leaving room for significant advancements to be made in the field. In recent years, several phytochemicals from plants and natural bioresources have been extracted and tested against various human malignancies using both in vitro and in vivo preclinical model systems. Cardamonin, a chalcone extracted from the Alpinia species, is an example of a natural therapeutic agent that has anti-cancer and anti-inflammatory effects against human cancer cell lines, including breast, lung, colon, and gastric, in both in vitro culture systems as well as xenograft mouse models. Earlier, cardamonin was used as a natural medicine against stomach related issues, diarrhea, insulin resistance, nephroprotection against cisplatin treatment, vasorelaxant and antinociceptive. The compound is well-known to inhibit proliferation, migration, invasion, and induce apoptosis, through the involvement of Wnt/β-catenin, NF-κB, and PI3K/Akt pathways. The good biosafety and pharmacokinetic profiling of cardamonin satisfy it as an attractive molecule for the development of an anticancer agent. The present review has summarized the chemo-preventive ability of cardamonin as an anticancer agent against numerous human malignancies.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology Biomedicine, the University of Melbourne, Parkville Victoria 3010, Australia
| | - Irum Naz
- Department of Biochemistry, Quaid-i-Azam University, Higher Education Commission of Pakistan, Islamabad 44000, Pakistan
| | - Namrata Dhudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Noida 201301, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
8
|
Bailly C, Vergoten G. Mechanistic insights into dimethyl cardamonin-mediated pharmacological effects: A double control of the AMPK-HMGB1 signaling axis. Life Sci 2020; 263:118601. [PMID: 33086122 PMCID: PMC7568849 DOI: 10.1016/j.lfs.2020.118601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022]
Abstract
Dimethyl cardamonin (DMC) has been isolated from diverse plants, notably from Cleistocalyx operculatus. We have reviewed the pharmacological properties of this natural product which displays anti-inflammatory, anti-hyperglycemic and anti-cancer properties. The pharmacological activities essentially derive from the capacity of DMC to interact with the protein targets HMGB1 and AMPK. Upon binding to HMGB1, DMC inhibits the nucleocytoplasmic transfer of the protein and its extracellular secretion, thereby blocking its alarmin function. DMC also binds to the AMP site of AMPK to activate phospho-AMPK and then to trigger downstream signals leading to the anti-inflammatory and anti-hyperglycemic effects. AMPK activation by DMC reinforces inhibition of HMGB1, to further reduce the release of the alarmin protein, likely contributing to the anticancer effects. The characterization of a tight control of DMC over the AMPK-HMGB1 axis not only helps to explain the known activities of DMC but also suggests opportunities to use this chalcone to treat other pathological conditions such as the acute respiratory distress syndrome (which affects patients with COVID-19). DMC structural analogues are also evoked.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
9
|
Ruibin J, Bo J, Danying W, Jianguo F, Linhui G. Cardamonin induces G2/M phase arrest and apoptosis through inhibition of NF-κB and mTOR pathways in ovarian cancer. Aging (Albany NY) 2020; 12:25730-25743. [PMID: 33234722 PMCID: PMC7803546 DOI: 10.18632/aging.104184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Cardamonin, a natural chalcone, is reported to induce apoptosis and inhibit cancer cell growth. However, the mechanisms underlying the therapeutic effects of cardamonin remain to be established. Here, we have focused on cardamonin-induced apoptosis in ovarian cancer cells, both in vitro and in vivo. The effects of cardamonin on cell cycle patterns and apoptotic responses of cells were assessed in this study. Western blot was employed to determine the effects of cardamonin on expression of cell cycle- and apoptosis-related proteins. Our results indicate that cardamonin suppresses cancer cell growth by inducing G2/M phase arrest and apoptosis through targeted inhibition of NF-κB and mTOR pathways. The collective findings provide novel insights into the pathways responsible for the anticancer effects of cardamonin and support its potential utility as a clinical therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Jiang Ruibin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jin Bo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Wan Danying
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Feng Jianguo
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Gu Linhui
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
10
|
Possible Participation of Ionotropic Glutamate Receptors and l-Arginine-Nitric Oxide-Cyclic Guanosine Monophosphate-ATP-Sensitive K + Channel Pathway in the Antinociceptive Activity of Cardamonin in Acute Pain Animal Models. Molecules 2020; 25:molecules25225385. [PMID: 33217904 PMCID: PMC7698774 DOI: 10.3390/molecules25225385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9–4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
Collapse
|
11
|
Yue Y, Liu L, Liu P, Li Y, Lu H, Li Y, Zhang G, Duan X. Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol Lett 2019; 19:1393-1399. [PMID: 32002030 PMCID: PMC6960385 DOI: 10.3892/ol.2019.11242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
2′,4′-dihydroxy-6′-methoxychalcone (cardamonin) is a natural compound with anti-proliferative effects on several cancer types including nasopharyngeal carcinoma. The effects of cardamonin on melanoma cells are unknown. The present study investigated the anti-proliferative effect of cardamonin on human melanoma cell lines (M14 and A375), and the underlying apoptosis inducing mechanisms. MTS assay showed that cardamonin inhibited M14 cells viability, and a reduction of the M14 cell density was also observed. Flow cytometry showed that cardamonin induced M14 cells apoptosis in a dose-dependent manner. Western blot analysis showed protein expression in M14 and A375; the pro-apoptotic protein BAX was upregulated, while the anti-apoptotic protein B-cell lymphoma-2 was downregulated. The protein expression of cleaved caspase-8, −9 and cleaved poly (ADP-ribose) polymerase was increased, whereas P65 was decreased. Furthermore, cardamonin inhibited M14 cell migration. These findings suggest that cardamonin may be a novel anticancer treatment for human melanoma.
Collapse
Affiliation(s)
- Yuyang Yue
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lijuan Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Peipei Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuting Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Haitao Lu
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yanjia Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Guoqiang Zhang
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinsuo Duan
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
12
|
Swanepoel B, Nitulescu GM, Olaru OT, Venables L, van de Venter M. Anti-Cancer Activity of a 5-Aminopyrazole Derivative Lead Compound (BC-7) and Potential Synergistic Cytotoxicity with Cisplatin against Human Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20225559. [PMID: 31703393 PMCID: PMC6888365 DOI: 10.3390/ijms20225559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
The use of some very well-known chemotherapeutic agents, such as cisplatin, is limited by toxicity in normal tissues and the development of drug resistance. In order to address drug resistance and the side-effects of anti-cancer agents, recent research has focused on finding novel combinations of anti-cancer agents with non-overlapping mechanisms of action. The cytotoxic effect of the synthetic 5-aminopyrazole derivative N-[[3-(4-bromophenyl)-1H-pyrazol-5-yl]-carbamothioyl]-4-chloro-benzamide (BC-7) was evaluated by the bis-Benzamide H 33342 trihydrochloride/propidium iodide (Hoechst 33342/PI) dual staining method against HeLa, MeWo, HepG2, Vero, and MRHF cell lines. Quantitative fluorescence image analysis was used for the elucidation of mechanism of action and synergism with cisplatin in HeLa cells. BC-7 displayed selective cytotoxicity towards HeLa cells (IC50 65.58 ± 8.40 μM) and induced apoptosis in a mitochondrial- and caspase dependent manner. This was most likely preceded by cell cycle arrest in the early M phase and the onset of mitotic catastrophe. BC-7 increased the cytotoxic effect of cisplatin in a synergistic manner with combination index (CI) values less than 0.9 accompanied by highly favourable dose reduction indices. Therefore, the results obtained support the implication that BC-7 has potential anti-cancer properties and that combinations of BC-7 with cisplatin should be further investigated for potential clinical applications.
Collapse
Affiliation(s)
- Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
- Correspondence: or
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| |
Collapse
|
13
|
Jin J, Qiu S, Wang P, Liang X, Huang F, Wu H, Zhang B, Zhang W, Tian X, Xu R, Shi H, Wu X. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:377. [PMID: 31455352 PMCID: PMC6712736 DOI: 10.1186/s13046-019-1351-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Background Cardamonin, a chalcone isolated from Alpiniae katsumadai, has anti-inflammatory and anti-tumor activities. However, the molecular mechanism by which cardamonin inhibits breast cancer progression largely remains to be determined. Methods CCK-8 and Hoechst 33258 staining were used to detect cell growth and apoptosis, respectively. HIF-1α driven transcription was measured by luciferase reporter assay. Glucose uptake and lactate content were detected with 2-NBDG and L-Lactate Assay Kit. Cell metabolism assays were performed on Agilent’s Seahorse Bioscience XF96 Extracellular Flux Analyzer. Mitochondrial membrane potential was measured with JC-1 probe. DCFH-DA was used to measure ROS level. Protein expression was detected by western blotting assay. Immunohistochemistry was performed to measure the expression of HIF-1α, LDHA and CD31 in tumor tissues. Results Cardamonin inhibited growth of the triple negative breast cancer cell line MDA-MB-231 in vitro and in vivo by suppressing HIF-1α mediated cell metabolism. Cardamonin inhibited the expression of HIF-1α at mRNA and protein levels by repressing the mTOR/p70S6K pathway, and subsequently enhanced mitochondrial oxidative phosphorylation and induced reactive oxygen species (ROS) accumulation. We also found that cardamonin inhibited the Nrf2-dependent ROS scavenging system which further increased intracellular ROS levels. Eventually, accumulation of the intracellular ROS induced apoptosis in breast cancer cells. In addition, cardamonin treatment reduced glucose uptake as well as lactic acid production and efflux, suggesting its function in repressing the glycolysis process. Conclusions These results reveal novel function of cardamonin in modulating cancer cell metabolism and suppressing breast cancer progression, and suggest its potential for breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1351-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinmei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Shuiping Qiu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Xiaohui Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Beibei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinhui Tian
- Institute of Interdisciplinary Integrative Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Biopharm 553, 789 S. Limestone, Lexington, KY, 40536, USA.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| |
Collapse
|
14
|
Shi D, Zhao D, Niu P, Zhu Y, Zhou J, Chen H. Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells. Altern Ther Health Med 2018; 18:317. [PMID: 30514289 PMCID: PMC6278091 DOI: 10.1186/s12906-018-2380-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023]
Abstract
Background Autophagy occurs in cells that undergoing nutrient deprivation. Glycolysis rapidly supplies energy for the proliferation of cancer cells. Cardamonin inhibits proliferation and enhances autophagy by mTORC1 suppression in ovarian cancer cells. Here, we investigate the relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression. Methods Treated with indicated compounds, ATP content and the activity of hexokinase (HK) and lactate dehydrogenase (LDH) were analyzed by the assay kits. Autophagy was detected by monodansylcadaverin (MDC) staining. The relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression was analyzed by Western blot. Results We found that cardamonin inhibited the lactate secretion, ATP production, and the activity of HK and LDH. The results demonstrated that cardamonin enhanced autophagy in SKOV3 cells, as indicated by acidic compartments accumulation, microtubule-associated protein 1 Light Chain 3-II (LC3-II) and lysosome associated membrane protein 1 up-regulation. Our results showed that the activation of mTORC1 signaling and the expression HK2 were reduced by cardamonin; whereas the phosphorylation of AMPK (AMP-activated protein kinase) was increased. We also confirmed that the AMPK inhibitor, Compound C, reversed cardamonin-induced upregulation of LC3-II. Conclusion These results suggest that cardamonin-induced autophagy is associated with inhibition on glycolysis by down-regulating the activity of mTORC1 in ovarian cancer cells.
Collapse
|