1
|
Mohammadi M, Fazilat A, Mamalo AS, Ojarudi M, Hemmati-Dinarvand M, Beilankouhi EAV, Valilo M. Correlation of PTEN signaling pathway and miRNA in breast cancer. Mol Biol Rep 2024; 51:221. [PMID: 38281224 DOI: 10.1007/s11033-023-09191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Breast cancer (BC) is one of the most common cancers among women and can be fatal if not diagnosed and treated on time. Various genetic and environmental factors play a significant role in the development and progression of BC. Within the body, different signaling pathways have been identified that contribute to cancer progression, or conversely, cancer prevention. Phosphatase and tensin homolog (PTEN) is one of the proteins that prevent cancer by inhibiting the oncogenic PI3K/Akt/mTOR signaling pathway. MicroRNAs (miRNAs) are molecules with about 18 to 28 base pairs, which regulate about 30% of human genes after transcription. miRNAs play a key role in the progression or prevention of cancer through different signaling pathway and mechanisms, e.g., apoptosis, angiogenesis, and proliferation. miRNAs, which are upstream mediators of PTEN, can reinforce or suppress the effect of PTEN signaling on BC cells, and suppressing the PTEN signaling, linked to weakness of the cancer cells to chemotherapeutic drugs. However, the precise mechanism and function of miRNAs on PTEN in BC are not yet fully understood. Therefore, in the present study, has been focused on miRNAs regulating PTEN function in BC.
Collapse
Affiliation(s)
- Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Zhang L, Xing F, Bao L. Circ-0000979 promotes the development of gastric carcinoma by sponging miR-136 and modulating SP1 mRNA expression level. Histol Histopathol 2023; 38:1205-1217. [PMID: 36629013 DOI: 10.14670/hh-18-578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Circular RNAs (circRNAs) are a new class of non-coding RNAs that play pivotal biological roles in several types of cancer cells. However, the role of circ-0000979 in gastric cancer (GC) has never been explored. Therefore, the current study aims to examine the functional effects of circ-0000979 in GC development and progression. The expression level of circ-0000979 was validated using qRT-PCR analysis. We found that circ-0000979 is significantly upregulated in GC samples. Using AGS and HGC27 GC cell line, we examined the biological functions and regulatory mechanisms of circ-0000979 in GC in vitro and in vivo by knocking down circ-0000979. We found that circ-0000979 is sub-cellularly localized in the cytoplasm of GC cells. Functionally, silencing circ-0000979 leads to a significant reduction in GC cell proliferation and migration. In vivo assays showed that circ-0000979 knockdown markedly reduced GC tumor growth. CircRNA interactome predicted miR-136 as circ-0000979 targeting miRNA, while starbase prediction result showed that miR-136 targeted the 3'UTR region of SP1 mRNA. Taken together, our results demonstrated that circ-0000979, as a carcinogenic circRNA, promotes the progression of GC by regulating the miR-136/SP1 pathway. Circ-0000979 is a potential RNA-based therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Pathology, Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Fengjuan Xing
- Department of Pathology, The Affliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shangdong province, PR China
| | - Lei Bao
- Department of Pathology, The Affliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shangdong province, PR China.
| |
Collapse
|
3
|
Mushtaq I, Bhat GR, Rah B, Besina S, Zahoor S, Wani MA, Shah MA, Bashir S, Farooq M, Rather RA, Afroze D. Telomere Attrition With Concomitant hTERT Overexpression Involved in the Progression of Gastric Cancer May Have Prognostic and Clinical Implications in High-Risk Population Group From North India. Front Oncol 2022; 12:919351. [PMID: 35912187 PMCID: PMC9326504 DOI: 10.3389/fonc.2022.919351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Genetic instabilities exacerbated by the dysfunction of telomeres can lead to the development of cancer. Nearly 90% of all human malignancies are linked with telomere dysregulation and overexpression of telomerase, an enzyme that catalyzes the synthesis of telomeric DNA repeats at the ends of chromosomes. The burden of gastric cancer continues to inflict a deterring impact on the global health scenario, accounting for over one million new cases in 2020. The disease is asymptomatic in its early stages of progression, which is attributed to the poor prognosis and overall surge in mortality rate worldwide. Exploiting telomere physiology can provide extensive mechanistic insight into telomere-associated gastric cancer progression and its use as a target in a variety of therapeutic interventions. In this study, we aimed to evaluate the clinical implications of c-Myc, human telomerase reverse transcriptase (hTERT) expression, and telomere length in patients with gastric cancer. A total of 57 gastric cancer cases and adjacent controls were included in the study. RT-PCR and immunohistochemistry were used to assess the expression levels of c-Myc and hTERT. The relative telomere length was measured by MMQPCR using the Cawthon method. Our results indicated that the shorter telomere and increased hTERT expression were associated with gastric cancer progression. The study also highlighted the role of short telomeres and increased expression of hTERT in gastric cancer progression and its association with various etiological risk factors, transcriptional activators, and overall survival among the ethnic Kashmiri population of North India.
Collapse
Affiliation(s)
- Ifra Mushtaq
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Bilal Rah
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Syed Besina
- Department of Pathology, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Sheikh Zahoor
- Department of Surgical Oncology, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Muneer A. Wani
- Department of General Surgery, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Mubashir A. Shah
- Department of General Surgery, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Sadaf Bashir
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Muzamil Farooq
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Rafiq A. Rather
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-I- Kashmir Institute of Medical Sciences, Srinagar, India
- *Correspondence: Dil Afroze,
| |
Collapse
|
4
|
Gu G, Hu C, Hui K, Zhang H, Chen T, Zhang X, Jiang X. Exosomal miR-136-5p Derived from Anlotinib-Resistant NSCLC Cells Confers Anlotinib Resistance in Non-Small Cell Lung Cancer Through Targeting PPP2R2A. Int J Nanomedicine 2021; 16:6329-6343. [PMID: 34556984 PMCID: PMC8455141 DOI: 10.2147/ijn.s321720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Anlotinib resistance is a challenge for advanced non-small cell lung cancer (NSCLC). Understanding the underlying mechanisms against anlotinib resistance is of great importance to improve prognosis and treatment of patients with advanced NSCLC. Methods RT-qPCR assay was used to assess the level of miR-136-5p in anlotinib-resistant NSCLC cells and exosomes derived from anlotinib-resistant NSCLC cells. In addition, miR-136-5p level in tumor tissues from patients who exhibited a poor response to anlotinib therapy and patients who were therapy naïve or patients who exhibited a positive response to anlotinib therapy was detected by RT-qPCR assay. Results In this study, we found that high levels of plasma exosomal miR-136-5p is correlated with clinically poor anlotinib response. In addition, anlotinib-resistant NSCLC cells promoted parental NSCLC cell proliferation via transferring functional miR-136-5p from anlotinib-resistant NSCLC cells to parental NSCLC cells via exosomes. Moreover, exosomal miR-136-5p could endow NSCLC cells with anlotinib resistance by targeting PPP2R2A, leading to the activation of Akt pathway. Furthermore, miR-136-5p antagomir packaging into anlotinib-resistant NSCLC cell-derived exosomes functionally restored NSCLC cell anlotinib sensitivity in vitro. Animal studies showed that A549/anlotinib cell-derived exosomal miR-136-5p agomir promoted A549 cell anlotinib resistance in vivo. Conclusion Collectively, these findings indicated that anlotinib-resistant NSCLC cell-derived exosomal miR-136-5p confers anlotinib resistance in NSCLC cells by targeting PPP2R2A, indicating miR-136-5p may act as a potential biomarker for anlotinib response in NSCLC.
Collapse
Affiliation(s)
- Guoqing Gu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Huiqin Zhang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Ting Chen
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Xin Zhang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, People's Republic of China
| | - Xiaodong Jiang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People's Republic of China
| |
Collapse
|
5
|
Park JL, Kim SK, Jeon S, Jung CK, Kim YS. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers (Basel) 2021; 13:632. [PMID: 33562573 PMCID: PMC7916038 DOI: 10.3390/cancers13040632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The challenge in managing thyroid nodules is to accurately diagnose the minority of those with malignancy. We aimed to identify diagnostic and prognostic miRNA markers for thyroid nodules. In a discovery cohort, we identified 20 candidate miRNAs to differentiate between noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) and papillary thyroid carcinomas (PTC) by using the high-throughput small RNA sequencing method. We then selected three miRNAs (miR-136, miR-21, and miR-127) that were differentially expressed between the PTC follicular variant and other variants in The Cancer Genome Atlas data. High expression of three miRNAs differentiated thyroid cancer from nonmalignant tumors, with an area under curve (AUC) of 0.76-0.81 in an independent cohort. In patients with differentiated thyroid cancer, the high-level expression of the three miRNAs was an independent indicator for both distant metastases and recurrent or persistent disease. In patients with PTC, a high expression of miRNAs was associated with an aggressive histologic variant, extrathyroidal extension, distant metastasis, or recurrent or persistent disease. Three miRNAs may be used as diagnostic markers for differentiating thyroid cancers from benign tumors and tumors with extremely low malignant potential (NIFTP), as well as prognostic markers for predicting the risk of recurrent/persistent disease for differentiated thyroid cancer.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Bioinformatics, University of Science and Technology, Daejeon 34141, Korea
| | - Sora Jeon
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Chan-Kwon Jung
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yong-Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
6
|
Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis. Cell Death Dis 2020; 11:1038. [PMID: 33288752 PMCID: PMC7721747 DOI: 10.1038/s41419-020-03240-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Apart from being potential prognostic biomarkers and therapeutic targets, long non-coding RNAs (lncRNAs) modulate the development and progression of multiple cancers. PlncRNA-1 is a newly discovered lncRNA that exhibits the above properties through multiple regulatory pathways. However, the clinical significance and molecular mechanisms of PlncRNA-1 in bladder cancer have not been established. PlncRNA-1 was found to be overexpressed in 71.43% of bladder cancer tissues. Moreover, the expression level correlated with tumor invasion, T stage, age, and number of tumors, but not with gender, recurrent status, preoperative treatment, pathological grade, and tumor size. The expression level of PlncRNA-1 can, to a certain extent, be used as a predictor of the degree of tumor invasion and T stage among BC patients. Inhibiting PlncRNA-1 expression impaired the proliferation, migration, and invasion of T24 and 5637 bladder cancer cells in vitro and in vivo. Specifically, PlncRNA-1 promoter in BC tissues was found to be hypomethylated at position 131 (36157603 on chromosome 21). PlncRNA-1 promoter hypomethylation induces the overexpression of PlncRNA-1. In addition, PlncRNA-1 modulated the expression of smad3 and has-miR-136-5p (miR-136). Conversely, miR-136 regulated the expression of PlncRNA-1 and smad3. PlncRNA-1 mimics competitive endogenous RNA (ceRNA) in its regulation of smad3 expression by binding miR-136. Rescue analysis further revealed that modulation of miR-136 could reverse the expression of smad3 and epithelial–mesenchymal transition (EMT) marker proteins impaired by PlncRNA-1. In summary, PlncRNA-1 has important clinical predictive values and is involved in the post-transcriptional regulation of smad3. The PlncRNA-1/miR-136/smad3 axis provides insights into the regulatory mechanism of BC, thus may serve as a potential therapeutic target and prognostic biomarker for cancer.
Collapse
|
7
|
Involvement of Differentially Expressed microRNAs in the PEGylated Liposome Encapsulated 188Rhenium-Mediated Suppression of Orthotopic Hypopharyngeal Tumor. Molecules 2020; 25:molecules25163609. [PMID: 32784458 PMCID: PMC7463599 DOI: 10.3390/molecules25163609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal cancer (HPC) accounts for the lowest survival rate among all types of head and neck cancers (HNSCC). However, the therapeutic approach for HPC still needs to be investigated. In this study, a theranostic 188Re-liposome was prepared to treat orthotopic HPC tumors and analyze the deregulated microRNA expressive profiles. The therapeutic efficacy of 188Re-liposome on HPC tumors was evaluated using bioluminescent imaging followed by next generation sequencing (NGS) analysis, in order to address the deregulated microRNAs and associated signaling pathways. The differentially expressed microRNAs were also confirmed using clinical HNSCC samples and clinical information from The Cancer Genome Atlas (TCGA) database. Repeated doses of 188Re-liposome were administrated to tumor-bearing mice, and the tumor growth was apparently suppressed after treatment. For NGS analysis, 13 and 9 microRNAs were respectively up-regulated and down-regulated when the cutoffs of fold change were set to 5. Additionally, miR-206-3p and miR-142-5p represented the highest fold of up-regulation and down-regulation by 188Re-liposome, respectively. According to Differentially Expressed MiRNAs in human Cancers (dbDEMC) analysis, most of 188Re-liposome up-regulated microRNAs were categorized as tumor suppressors, while down-regulated microRNAs were oncogenic. The KEGG pathway analysis showed that cancer-related pathways and olfactory and taste transduction accounted for the top pathways affected by 188Re-liposome. 188Re-liposome down-regulated microRNAs, including miR-143, miR-6723, miR-944, and miR-136 were associated with lower survival rates at a high expressive level. 188Re-liposome could suppress the HPC tumors in vivo, and the therapeutic efficacy was associated with the deregulation of microRNAs that could be considered as a prognostic factor.
Collapse
|
8
|
Sun Z, Chen H, Han Z, Huang W, Hu Y, Zhao M, Lin T, Yu J, Liu H, Jiang Y, Li G. Genomics Score Based on Genome-Wide Network Analysis for Prediction of Survival in Gastric Cancer: A Novel Prognostic Signature. Front Genet 2020; 11:835. [PMID: 32849822 PMCID: PMC7423976 DOI: 10.3389/fgene.2020.00835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose Gastric cancer (GC) is a product of multiple genetic abnormalities, including genetic and epigenetic modifications. This study aimed to integrate various biomolecules, such as miRNAs, mRNA, and DNA methylation, into a genome-wide network and develop a nomogram for predicting the overall survival (OS) of GC. Materials and Methods A total of 329 GC cases, as a training cohort with a random of 150 examples included as a validation cohort, were screened from The Cancer Genome Atlas database. A genome-wide network was constructed based on a combination of univariate Cox regression and least absolute shrinkage and selection operator analyses, and a nomogram was established to predict 1-, 3-, and 5-year OS in the training cohort. The nomogram was then assessed in terms of calibration, discrimination, and clinical usefulness in the validation cohort. Afterward, in order to confirm the superiority of the whole gene network model and further reduce the biomarkers for the improvement of clinical usefulness, we also constructed eight other models according to the different combinations of miRNAs, mRNA, and DNA methylation sites and made corresponding comparisons. Finally, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also performed to describe the function of this genome-wide network. Results A multivariate analysis revealed a novel prognostic factor, a genomics score (GS) comprising seven miRNAs, eight mRNA, and 19 DNA methylation sites. In the validation cohort, comparing to patients with low GS, high-GS patients (HR, 12.886; P < 0.001) were significantly associated with increased all-cause mortality. Furthermore, after stratification of the TNM stage (I, II, III, and IV), there were significant differences revealed in the survival rates between the high-GS and low-GS groups as well (P < 0.001). The 1-, 3-, and 5-year C-index of whole genomics-based nomogram were 0.868, 0.895, and 0.928, respectively. The other models have comparable or relatively poor comprehensive performance, while they had fewer biomarkers. Besides that, DAVID 6.8 further revealed multiple molecules and pathways related to the genome-wide network, such as cytomembranes, cell cycle, and adipocytokine signaling. Conclusion We successfully developed a GS based on genome-wide network, which may represent a novel prognostic factor for GC. A combination of GS and TNM staging provides additional precision in stratifying patients with different OS prognoses, constituting a more comprehensive sub-typing system. This could potentially play an important role in future clinical practice.
Collapse
Affiliation(s)
- Zepang Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weicai Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingli Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Ashrafizadeh M, Najafi M, Ang HL, Moghadam ER, Mahabady MK, Zabolian A, Jafaripour L, Bejandi AK, Hushmandi K, Saleki H, Zarrabi A, Kumar AP. PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines 2020; 8:E264. [PMID: 32756305 PMCID: PMC7460532 DOI: 10.3390/biomedicines8080264] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the life-threatening disorders that, in spite of excellent advances in medicine and technology, there is no effective cure for. Surgery, chemotherapy, and radiotherapy are extensively applied in cancer therapy, but their efficacy in eradication of cancer cells, suppressing metastasis, and improving overall survival of patients is low. This is due to uncontrolled proliferation of cancer cells and their high migratory ability. Finding molecular pathways involved in malignant behavior of cancer cells can pave the road to effective cancer therapy. In the present review, we focus on phosphatase and tensin homolog (PTEN) signaling as a tumor-suppressor molecular pathway in gastric cancer (GC). PTEN inhibits the PI3K/Akt pathway from interfering with the migration and growth of GC cells. Its activation leads to better survival of patients with GC. Different upstream mediators of PTEN in GC have been identified that can regulate PTEN in suppressing growth and invasion of GC cells, such as microRNAs, long non-coding RNAs, and circular RNAs. It seems that antitumor agents enhance the expression of PTEN in overcoming GC. This review focuses on aforementioned topics to provide a new insight into involvement of PTEN and its downstream and upstream mediators in GC. This will direct further studies for evaluation of novel signaling networks and their targeting for suppressing GC progression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 6461665145, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful 3419759811, Iran;
| | - Atefe Kazemzade Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (A.K.B.); (H.S.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| |
Collapse
|