1
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2041-2056. [PMID: 36840906 DOI: 10.1007/s13346-023-01308-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy. A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy.
Collapse
Affiliation(s)
- Sedigheh Shahvali
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, Jadidi-Niaragh F. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 2023; 21:139. [PMID: 37316886 DOI: 10.1186/s12964-023-01151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Wang Z, Wang J, Lan T, Zhang L, Yan Z, Zhang N, Xu Y, Tao Q. Role and mechanism of fibroblast-activated protein-α expression on the surface of fibroblast-like synoviocytes in rheumatoid arthritis. Front Immunol 2023; 14:1135384. [PMID: 37006278 PMCID: PMC10064071 DOI: 10.3389/fimmu.2023.1135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast-activated protein-α (FAP) is a type II integrated serine protease expressed by activated fibroblasts during fibrosis or inflammation. Fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) synovial sites abundantly and stably overexpress FAP and play important roles in regulating the cellular immune, inflammatory, invasion, migration, proliferation, and angiogenesis responses in the synovial region. Overexpression of FAP is regulated by the initial inflammatory microenvironment of the disease and epigenetic signaling, which promotes RA development by regulating FLSs or affecting the signaling cross-linking FLSs with other cells at the local synovium and inflammatory stimulation. At present, several treatment options targeting FAP are in the process of development. This review discusses the basic features of FAP expressed on the surface of FLSs and its role in RA pathophysiology and advances in targeted therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Jinping Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Tianyi Lan
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Liubo Zhang
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zeran Yan
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| |
Collapse
|
5
|
Meng Y, Yu J, Zhu M, Zhou J, Li N, Liu F, Zhang H, Fang X, Li J, Feng X, Wang L, Jiang H, Lu J, Shao C, Bian Y. CT radiomics signature: a potential biomarker for fibroblast activation protein expression in patients with pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2022; 47:2822-2834. [PMID: 35451626 DOI: 10.1007/s00261-022-03512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To develop and validate a radiomics model to predict fibroblast activation protein (FAP) expression in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS This retrospective study included consecutive 152 patients with PDAC who underwent MDCT scan and surgical resection from January 2017 to December 2017 (training set) and from January 2018 to April 2018 (validation set). In the training set, 1409 portal radiomic features were extracted from each patient's preoperative imaging. Optimal features were selected using the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm, whereupon the extreme gradient boosting (XGBoost) was developed using the radiomics features. The performance of the XGBoost classifier performance was assessed by its calibration, discrimination, and clinical usefulness. RESULTS The patients were divided into FAP-low (n = 91; 59.87%) and FAP-high (n = 61; 40.13%) groups according to the optimal FAP cutoff (45.71%). Patients in the FAP-low group showed longer survival. The XGBoost classifier comprised 13 selected radiomics features and showed good discrimination in the training set [area under the curve (AUC), 0.97] and the validation set (AUC, 0.75). It also performed well in the calibration test and decision-curve analysis, demonstrating its potential clinical value. CONCLUSIONS The XGBoost classifier based on CT radiomics in the portal venous phase can non-invasively predict FAP expression and may help to improve clinical decision-making in patients with PDAC.
Collapse
Affiliation(s)
- Yinghao Meng
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Radiology, No. 971 Hospital of Navy, Qingdao, Shandong, China
| | - Jieyu Yu
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengmeng Zhu
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhou
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Na Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaocheng Feng
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Wang
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China.
- Department of Radiology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, China.
- Department of Radiology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
7
|
Shi J, Hou Z, Yan J, Qiu W, Liang L, Meng M, Li L, Wang X, Xie Y, Jiang L, Wang W. The prognostic significance of fibroblast activation protein-α in human lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:224. [PMID: 32309371 PMCID: PMC7154482 DOI: 10.21037/atm.2020.01.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Fibroblast activation protein (FAP) is a type II cell surface-bound integral serine protease, which is an important biomarker of cancer-associated fibroblasts. FAP-α performs several biological activities, including remolding extracellular matrix and acting as an immunosuppressor in the tumor microenvironment. However, the proliferation role of FAP-α in human lung adenocarcinoma has not been fully elucidated. Methods The expression of FAP-α in 94-paired human lung adenocarcinoma tissues was identified by immunohistochemistry test. The effect of FAP on cell proliferation was examined by CCK-8 assay. RNA-sequencing and bioinformatics analysis were utilized to investigate the underlying mechanism. Western blot analysis, quantitative polymerase chain reaction (qPCR), and nude mice experiments, were also conducted for further validation. Results The proliferation rates of human fibroblast strains FAP-HFF and FAP-BJ, and human lung adenocarcinoma cell line FAP-SPC-A-1 were higher than those of controls. The nude mice experiment also showed that FAP could promote the proliferation of SPC-A-1 cell line in vivo. qPCR and Western blot analysis indicated that CCNB1 was upregulated by the overexpression of FAP in the lung adenocarcinoma cell line. The expression of FAP-α was higher in both the cytoplasm and stroma of lung adenocarcinoma than in adjacent normal tissues. Survival analysis indicated that patients with higher expression of FAP-α in tumor stroma had a poor prognosis (P=0.019). The Cancer Genome Atlas Program (TCGA) data also showed that the expression of FAP within tumor tissues was higher (in both cytoplasm and stroma) compared with that in normal tissues (P<0.05). Conclusions Our study indicates that FAP-α could facilitate the proliferation of lung adenocarcinoma cells and can be a prognostic marker in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianlin Shi
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, China.,Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Zongliu Hou
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Jun Yan
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Wanfang Qiu
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China.,Department of Ultrasound, Kunming Children's Hospital, Kunming 650228, China
| | - Luxin Liang
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Mingyao Meng
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Lin Li
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xiaodan Wang
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yanhua Xie
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Lihong Jiang
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650051, China
| | - Wenju Wang
- Key Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| |
Collapse
|
8
|
Zhang L, Yang L, Xia ZW, Yang SC, Li WH, Liu B, Yu ZQ, Gong PF, Yang YL, Sun WZ, Mo J, Li GS, Wang TY, Wang K. The role of fibroblast activation protein in progression and development of osteosarcoma cells. Clin Exp Med 2020; 20:121-130. [PMID: 31745677 DOI: 10.1007/s10238-019-00591-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
To investigate the expression levels of fibroblast activation protein (FAP) in human osteosarcoma tissues and its possible correlations with clinical pathological characteristics of patients with osteosarcoma, and to explore the potential effects of FAP on progression and development of osteosarcoma. Immunohistochemistry (IHC) assay was initially performed to detect the expression levels of FAP in 66 tumor tissues and adjacent non-tumor tissues. Patients were sequentially divided into two groups based on different expression levels of FAP. The correlations between the expression levels of FAP and the clinical pathological characteristics were investigated, and the role of FAP in proliferation, migration, and invasion of osteosarcoma cells was assessed via colony formation, MTT, wound healing, and transwell assays, respectively. The possible effects of FAP on tumor growth and metastasis were evaluated in vivo. We further attempted to reveal the underlying mechanism of FAP involved in tumor growth through bioinformatics and IHC assays. High expression levels of FAP were noted in human osteosarcoma tissues. It also was unveiled that FAP was significantly associated with the tumor size (P = 0.005*) and clinical stage (P = 0.017*). Our data further confirmed that knockdown of FAP remarkably blocked proliferation, migration, and invasion of osteosarcoma cells in vitro, and suppressed tumor growth and metastasis in mice via AKT signaling pathway. The possible role of FAP in progression and development of osteosarcoma could be figured out. Our data may be helpful to develop a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Li Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Wei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shi-Chang Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wen-Hui Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Qi Yu
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Peng-Fei Gong
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ya-Lin Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wei-Zong Sun
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Gui-Shi Li
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong Province, China
| | - Tian-Yi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, China.
| | - Kai Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
9
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Zhao T, Han D, Meng H. Rab23 contributes to the progression of colorectal cancer via protein kinase B and extracellular signal-regulated kinase signaling pathways. Oncol Lett 2019; 18:1793-1799. [PMID: 31423247 PMCID: PMC6607405 DOI: 10.3892/ol.2019.10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/10/2019] [Indexed: 11/06/2022] Open
Abstract
The role of Ras-related protein Rab23 in tumors has attracted increasing attention in recent years; however, whether it can function as an oncogenic protein remains under debate, and its role in colorectal cancer (CRC) is currently unknown. In the present study, high expression of Rab23 in CRC tissues was confirmed using immunohistochemistry, and high expression of Rab23 in CRC cells (SW1116 and HT29) was confirmed using reverse transcription-polymerase chain reaction and western blot analysis. A positive association of Rab23 with tumor size and advanced clinical stage was confirmed by χ2 analysis. In addition, the positive association of Rab23 with poor disease-free survival was confirmed by survival analysis. Cell experiments further demonstrated that overexpression of Rab23 increased the expression of the proliferation marker Ki-67 and the proliferative ability in SW1116 and HT29 cells. Molecular mechanism research revealed that the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signaling pathways contributed to the high expression of Ki-67 and increased the proliferative ability induced by Rab23 in CRC cells. In conclusion, the study confirmed the high expression of Rab23 in CRC, and its positive association with CRC progression and poor prognosis. Furthermore, the data demonstrated that Rab23 increased the proliferation of CRC cells via the ERK and AKT signaling pathways. These results suggest that Rab23 may be used as a protein for diagnosis and prognosis prediction in patients with CRC, and is proposed to be a novel therapeutic target for improving the patient outcome.
Collapse
Affiliation(s)
- Tongbi Zhao
- Digestive Department, Shanxian Central Hospital of Shandong Province, Heze, Shandong 274300, P.R. China
| | - Dong Han
- Digestive Department, Shanxian Central Hospital of Shandong Province, Heze, Shandong 274300, P.R. China
| | - Huan Meng
- Digestive Department, Shanxian Central Hospital of Shandong Province, Heze, Shandong 274300, P.R. China
| |
Collapse
|