1
|
Nascentes Melo LM, Kumar S, Riess V, Szylo KJ, Eisenburger R, Schadendorf D, Ubellacker JM, Tasdogan A. Advancements in melanoma cancer metastasis models. Pigment Cell Melanoma Res 2023; 36:206-223. [PMID: 36478190 DOI: 10.1111/pcmr.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Valeria Riess
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Krystina J Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Robin Eisenburger
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| |
Collapse
|
2
|
Liu X, Zhang K, Wang L, Geng B, Liu Z, Yi Q, Xia Y. Fluid shear stress-induced down-regulation of miR-146a-5p inhibits osteoblast apoptosis via targeting SMAD4. Physiol Res 2022. [DOI: 10.33549/physiolres.934922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fluid shear stress (FSS) plays an important role in osteoblast apoptosis. However, the role of miRNA in osteoblast apoptosis under FSS and possible molecular mechanisms remain unknown. Our aim of the study was to explore whether miR-146a-5p regulates osteoblast apoptosis under FSS and its molecular mechanisms. FSS could down-regulate the expression of miR-146a-5p in MC3T3-E1 cells. We confirm that up-regulation of miR-146a-5p promotes osteoblasts apoptosis and down-regulation of miR-146a-5p inhibits osteoblasts apoptosis. We further demonstrated that FSS inhibits osteoblast apoptosis by down-regulated miR-146a-5p. Dual-luciferase reporter assay validated that SMAD4 is a direct target gene of miR-146a-5p. In addition, mimic-146a-5p suppressed FSS-induced up-regulation of SMAD4 protein levels, which suggests that FSS elevated SMAD4 protein expression levels via regulation miR-146a-5p. Further investigations showed that SMAD4 could inhibit osteoblast apoptosis. We demonstrated that miR-146a-5p regulates osteoblast apoptosis via targeting SMAD4. Taken together, our present study showed that FSS-induced down-regulation miR-146a-5p inhibits osteoblast apoptosis via target SMAD4. These findings may provide novel mechanisms for FSS to inhibit osteoblast apoptosis, and also may provide a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Y Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
3
|
Fluid shear stress-induced down-regulation of miR-146a-5p inhibits osteoblast apoptosis via targeting SMAD4. Physiol Res 2022; 71:835-848. [PMID: 36281726 PMCID: PMC9814977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluid shear stress (FSS) plays an important role in osteoblast apoptosis. However, the role of miRNA in osteoblast apoptosis under FSS and possible molecular mechanisms remain unknown. Our aim of the study was to explore whether miR-146a-5p regulates osteoblast apoptosis under FSS and its molecular mechanisms. FSS could down-regulate the expression of miR-146a-5p in MC3T3-E1 cells. We confirm that up-regulation of miR-146a-5p promotes osteoblasts apoptosis and down-regulation of miR-146a-5p inhibits osteoblasts apoptosis. We further demonstrated that FSS inhibits osteoblast apoptosis by down-regulated miR-146a-5p. Dual-luciferase reporter assay validated that SMAD4 is a direct target gene of miR-146a-5p. In addition, mimic-146a-5p suppressed FSS-induced up-regulation of SMAD4 protein levels, which suggests that FSS elevated SMAD4 protein expression levels via regulation miR-146a-5p. Further investigations showed that SMAD4 could inhibit osteoblast apoptosis. We demonstrated that miR-146a-5p regulates osteoblast apoptosis via targeting SMAD4. Taken together, our present study showed that FSS-induced down-regulation miR-146a-5p inhibits osteoblast apoptosis via target SMAD4. These findings may provide novel mechanisms for FSS to inhibit osteoblast apoptosis, and also may provide a potential therapeutic target for osteoporosis.
Collapse
|
4
|
Pecorelli A, Valacchi G. Oxidative-Stress-Sensitive microRNAs in UV-Promoted Development of Melanoma. Cancers (Basel) 2022; 14:3224. [PMID: 35804995 PMCID: PMC9265047 DOI: 10.3390/cancers14133224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma is the most aggressive and life-threatening form of skin cancer. Key molecular events underlying the melanocytic transformation into malignant melanoma mainly involve gene mutations in which exposure to ultraviolet (UV) radiation plays a prominent role. However, several aspects of UV-induced melanomagenesis remain to be explored. Interestingly, redox-mediated signaling and perturbed microRNA (miRNA) profiles appear to be interconnected contributing factors able to act synergistically in melanoma initiation and progression. Since UV radiation can promote both redox imbalance and miRNA dysregulation, a harmful crosstalk between these two key cellular networks, with UV as central hub among them, is likely to occur in skin tissue. Therefore, decoding the complex circuits that orchestrate the interaction of UV exposure, oxidative stress, and dysregulated miRNA profiling can provide a deep understanding of the molecular basis of the melanomagenesis process. Furthermore, these mechanistic insights into the reciprocal regulation between these systems could have relevant implications for future therapeutic approaches aimed at counteracting UV-induced redox and miRNome imbalances for the prevention and treatment of malignant melanoma. In this review, we illustrate current information on the intricate connection between UV-induced dysregulation of redox-sensitive miRNAs and well-known signaling pathways involved in the malignant transformation of normal melanocytes to malignant melanoma.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Giuseppe Valacchi
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
5
|
Qi Y, Cui S, Liu L, Liu B, Wang T, Yan S, Tian H, Huang X. Expression and role of miR-146a and SMAD4 in placental tissue of pregnant women with preeclampsia. J Obstet Gynaecol Res 2022; 48:2151-2161. [PMID: 35751569 DOI: 10.1111/jog.15323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION To investigate the expression of miR-146a in severe preeclampsia (PE) and its effect on trophoblast cell proliferation, invasion and apoptosis, as well as its relationship with SMAD4. MATERIAL AND METHODS Participants were divided into the severe PE group (n = 30) and the normal group (n = 30). The expression of miR-146a and SMAD4 in placenta tissue was detected by immunohistochemistry, qRT-PCR, and western blot. Trophoblast cell lines HTR-8/SVneo were cultured to detect the expression of miR-146a under the Cobalt chloride (CoCl2 )-simulated hypoxia. The effects of miR-146a transfection on cell proliferation, invasion, apoptosis, and SMAD4 expression were analyzed. RESULTS Compared with the normal group, miR-146a expression was decreased and the protein and mRNA levels of SMAD4 were increased in placenta tissues of the severe PE group. Our in vitro experiments showed that the expression of miR-146a decreased after CoCl2 treatment. Silencing miR-146a caused increased expression of SMAD4 and decreased expression of VEGF. After transfection with miR-146a inhibitor, compared with the NC group, the invasion and proliferation of HTR-8/Svneo cells were decreased, while the apoptosis was enhanced. CONCLUSION The expression of miR-146a decreased in severe PE and was negatively correlated with SMAD4 expression. The expression of miR-146a was inhibited under hypoxia, and the low expression of miR-146a affected the proliferation, invasion, and apoptosis of trophoblast cells.
Collapse
Affiliation(s)
- Yue Qi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shihong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Beibei Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Tiantian Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shujun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haoxin Tian
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaobin Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
6
|
Babakhanzadeh E, Danaei H, Abedinzadeh M, Ashrafzadeh HR, Ghasemi N. Association of miR-146a and miR196a2 genotype with susceptibility to idiopathic recurrent pregnancy loss in Iranian women: A case-control study. Int J Reprod Biomed 2021; 19:725-732. [PMID: 34568733 PMCID: PMC8458919 DOI: 10.18502/ijrm.v19i8.9620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/04/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is the most common complaint of pregnancy in females with a prevalence of 5%. Numerous documents have shown that single nucleotide polymorphisms are able to change miRNA transcription and/or maturation, which may alter the incidence of disorders such as RPL. OBJECTIVE To assess the relationship of miR-146aC > G (rs2910164) and miR-196a2T > C (rs11614913) with RPL susceptibility in Iranian women. MATERIALS AND METHODS Blood samples were collected from 214 women who had experienced at least two consecutive spontaneous miscarriages (case) and 147 normal individuals without a history of miscarriage (control). MiR-146aC > G and miR-196a2T > C genotypes were evaluated via the restriction fragment length polymorphism technique. RESULTS The genotypes incidence did not show a significant difference in pre-miR-146aC > G polymorphism CC vs CG + GG (p = 0.854; OR = 0.933; 95% CI) and CC + CG vs GG (p = 0.282; OR = 1.454; 95% CI). Also, no significant difference was observed between pre-miR-196a2T > C polymorphism TT vs TC + CC (p = 0.862; OR = 0.938; 95% CI) and TT + TC vs CC and (p = 0.291; OR = 1.462; 95% CI) in both the case and control groups. CONCLUSION The results showed that although the distribution of miR-146aC > G and miR-196a2T > C was different between the unknown RPL and control groups, these variances were not statistically significant.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Danaei
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Abedinzadeh
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Ashrafzadeh
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Vergani E, Dugo M, Cossa M, Frigerio S, Di Guardo L, Gallino G, Mattavelli I, Vergani B, Lalli L, Tamborini E, Valeri B, Gargiuli C, Shahaj E, Ferrarini M, Ferrero E, Gomez Lira M, Huber V, Vecchio MD, Sensi M, Leone BE, Santinami M, Rivoltini L, Rodolfo M, Vallacchi V. miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators. Cell Commun Signal 2020; 18:156. [PMID: 32967672 PMCID: PMC7510138 DOI: 10.1186/s12964-020-00601-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance. Methods The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy. Results miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor. Conclusions Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract
Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori AmadeoLab, Milan, Italy
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simona Frigerio
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Lorenza Di Guardo
- Unit of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Mattavelli
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Vergani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Elena Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Valeri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Gargiuli
- Platform of Integrated Biology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori AmadeoLab, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Marina Ferrarini
- Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Macarena Gomez Lira
- Biology and Genetics, Department of Neurosciences Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Michele Del Vecchio
- Unit of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Platform of Integrated Biology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori AmadeoLab, Milan, Italy
| | | | - Mario Santinami
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
9
|
Borkowska A, Szumera-Ciećkiewicz A, Spałek M, Teterycz P, Czarnecka A, Kowalik A, Rutkowski P. Mutation profile of primary subungual melanomas in Caucasians. Oncotarget 2020; 11:2404-2413. [PMID: 32637031 PMCID: PMC7321700 DOI: 10.18632/oncotarget.27642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Specific genomic profile of cutaneous melanomas is related to UVR exposure, which exerts biological and therapeutic impact. Subungual melanoma (SUM) is an exceedingly rare disease; therefore, it is not well characterized. SUM pathogenesis is not related to UVR induced DNA damage and expected to differ from other melanoma subtypes. Our study aimed to define the mutation profile of SUM in Caucasians. Materials and Methods: Next-generation sequencing-based genomic analysis was used to identify frequently mutated loci in 50 cancer-related genes in 31 SUM primary tumors. Results: The most abundant mutations in SUM were found in KIT – in 13% of cases and NRAS – also in 13%, while BRAF - only in 3% of cases. Conclusions: Our findings confirmed a high frequency of KIT and NRAS mutations in SUM, as well as a low incidence of BRAF mutations. We reported novel KRAS, CTNNB1, TP53, ERBB2, and SMAD4 mutations in SUM. Our findings provide new insights into the molecular pathogenesis of SUM.
Collapse
Affiliation(s)
- Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Mateusz Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland.,Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
10
|
Zhou L, Liang H, Zhou X, Jia J, Ye C, Hu Q, Xu S, Yu Y, Zou G, Hu G. Genetic Characteristic and RNA-Seq Analysis in Transparent Mutant of Carp-Goldfish Nucleocytoplasmic Hybrid. Genes (Basel) 2019; 10:genes10090704. [PMID: 31547242 PMCID: PMC6771007 DOI: 10.3390/genes10090704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 01/24/2023] Open
Abstract
In teleost, pigment in the skin and scales played important roles in various biological processes. Iridophores, one of the main pigment cells in teleost, could produce silver pigments to reflect light. However, the specific mechanism of the formation of silver pigments is still unclear. In our previous study, some transparent mutant individuals were found in the carp-goldfish nucleocytoplasmic hybrid (CyCa hybrid) population. In the present study, using transparent mutants (TM) and wild type (WT) of the CyCa hybrid as a model, firstly, microscopic observations showed that the silver pigments and melanin were both lost in the scales of transparent mutants compared to that in wild types. Secondly, genetic study demonstrated that the transparent trait in the CyCa hybrid was recessively inherent, and controlled by an allele in line with Mendelism. Thirdly, RNA-Seq analysis showed that differential expression genes (DEGs) between wild type and transparent mutants were mainly enriched in the metabolism of guanine, such as hydrolase, guanyl nucleotide binding, guanyl ribonucleotide binding, and GTPase activity. Among the DEGs, purine nucleoside phosphorylase 4a (pnp4a) and endothelin receptor B (ednrb) were more highly expressed in the wild type compared to the transparent mutant (p < 0.05). Finally, miRNA-Seq analysis showed that miRNA-146a and miR-153b were both more highly expressed in the transparent mutant compared to that in wild type (p < 0.05). Interaction analysis between miRNAs and mRNAs indicated that miRNA-146a was associated with six DEGs (MGAT5B, MFAP4, GP2, htt, Sema6b, Obscn) that might be involved in silver pigmentation.
Collapse
Affiliation(s)
- Lingling Zhou
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongwei Liang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China.
| | - Xiaoyun Zhou
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingyi Jia
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cheng Ye
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiongyao Hu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaohua Xu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongning Yu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guiwei Zou
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China.
| | - Guangfu Hu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Iacona JR, Monteleone NJ, Lemenze AD, Cornett AL, Lutz CS. Transcriptomic studies provide insights into the tumor suppressive role of miR-146a-5p in non-small cell lung cancer (NSCLC) cells. RNA Biol 2019; 16:1721-1732. [PMID: 31425002 DOI: 10.1080/15476286.2019.1657351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a complex disease in need of new methods of therapeutic intervention. Recent interest has focused on using microRNAs (miRNAs) as a novel treatment method for various cancers. miRNAs negatively regulate gene expression post-transcriptionally, and have become attractive candidates for cancer treatment because they often simultaneously target multiple genes of similar biological function. One such miRNA is miR-146a-5p, which has been described as a tumor suppressive miRNA in NSCLC cell lines and tissues. In this study, we performed RNA-Sequencing (RNA-Seq) analysis following transfection of synthetic miR-146a-5p in an NSCLC cell line, A549, and validated our data with Gene Ontology and qRT-PCR analysis of known miR-146a-5p target genes. Our transcriptomic data revealed that miR-146a-5p exerts its tumor suppressive function beyond previously reported targeting of EGFR and NF-κB signaling. miR-146a-5p mimic transfection downregulated arachidonic acid metabolism genes, the RNA-binding protein HuR, and many HuR-stabilized pro-cancer mRNAs, including TGF-β, HIF-1α, and various cyclins. miR-146a-5p transfection also reduced expression and cellular release of the chemokine CCL2, and this effect was mediated through the 3' untranslated region of its mRNA. Taken together, our work reveals that miR-146a-5p functions as a tumor suppressor in NSCLC by controlling various metabolic and signaling pathways through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Nicholas J Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Alexander D Lemenze
- Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA.,Molecular Resource Facility, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Ashley L Cornett
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| |
Collapse
|
12
|
Wang TZ, Lin DD, Jin BX, Sun XY, Li N. Plasma microRNA: A novel non-invasive biomarker for HBV-associated liver fibrosis staging. Exp Ther Med 2018; 17:1919-1929. [PMID: 30783469 DOI: 10.3892/etm.2018.7117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to evaluate the potential use of 7 plasma miRNAs for liver fibrosis staging in patients with chronic hepatitis B virus (HBV) infection. Relative levels of miRNAs were measured using quantitative polymerase chain reaction and used to develop a diagnostic panel. A receiver operating characteristic (ROC) curve was drawn to evaluate the performance of individual miRNAs and the whole panel. It was identified that hsa-miR-122 exhibited significantly different expression levels between F4 and F3, F2, F1, and F0 fibrosis stages (P<0.05), and between F2 and F1 stages (P=0.045); hsa-miR-146a-5p, hsa-miR-29c-3p and hsa-miR-223 exhibited significantly different expression levels between F4 and F0 stages. ROC analysis revealed that hsa-miR-122-5p, hsa-miR-223 and hsa-miR-29c-3p identified patients with ≥F2 fibrosis with area under the curve (AUC) =0.745, 0.631 and 0.670, respectively. hsa-miR-122-5p identified patients with ≥F3 disease (AUC=0.783). hsa-miR-122-5p, hsa-miR-223 and hsa-miR-29c-3p identified patients with cirrhosis with AUC=0.776, 0.617 and 0.619, respectively. The miRNA panel exhibited a higher accuracy compared with individual miRNAs in discriminating between ≥F2, ≥F3 and F4 fibrosis stages with AUC=0.904, 0.889 and 0.835, respectively. hsa-miR-122-5p, hsa-miR-146a, hsa-miR-29c and hsa-miR-223 were positively correlated with fibrosis stage. hsa-miR-122-5p and hsa-miR-381-3p were negatively correlated with alanine aminotransferase, aspartate transaminase and HBV viral DNA load. These 7 miRNAs may serve as potential biomarkers of liver fibrosis in patients with HBV-associated fibrosis. The miRNA panel may serve as a novel non-invasive method for liver fibrosis staging.
Collapse
Affiliation(s)
- Tie-Zheng Wang
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Dong-Dong Lin
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Bo-Xun Jin
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiang-Ying Sun
- Beijing QuantoBio Biotechnology Co. Ltd., Beijing Economic-Technological Development Area, Beijing 100176, P.R. China
| | - Ning Li
- Department of General Surgery, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|