1
|
Unraveling the molecular mechanism of l-menthol against cervical cancer based on network pharmacology, molecular docking and in vitro analysis. Mol Divers 2023; 27:323-340. [PMID: 35467269 DOI: 10.1007/s11030-022-10429-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/30/2022] [Indexed: 02/08/2023]
Abstract
Cervical cancer is a major cause of gynecological related mortalities in developing countries. Cisplatin, a potent chemotherapeutic agent used for treating advanced cervical cancer exhibits side effects and resistance development. The current study was aimed to investigate the repurposing of l-menthol as a potential therapeutic drug against cervical cancer. L-menthol was predicted to be non-toxic with good pharmacokinetic properties based on SwissADME and pkCSM analysis. Subsequently, 543 and 1664 targets of l-menthol and cervical cancer were identified using STITCH, BATMAN-TCM, PharmMapper and CTD databases. STRING and Cytoscape analysis of the merged protein-protein interaction network revealed 107 core targets of l- menthol against cervical cancer. M-CODE identified highly connected clusters between the core targets which through KEGG analysis were found to be enriched in pathways related to apoptosis and adherence junctions. Molecular docking showed that l- menthol targeted E6, E6AP and E7 onco-proteins of HPV that interact and inactivate TP53 and Rb1 in cervical cancer, respectively. Molecular docking also showed good binding affinity of l-menthol toward proteins associated with apoptosis and migration. Molecular dynamics simulation confirmed stability of the docked complexes. In vitro analysis confirmed that l-menthol was cytotoxic towards cervical cancer CaSki cells and altered expression of TP53, Rb1, CDKN1A, E2F1, NFKB1, Akt-1, caspase-3, CDH1 and MMP-2 genes identified through network pharmacology approach. Schematic representation of the work flow depicting the potential of l-menthol to target cervical cancer.
Collapse
|
2
|
Bona NP, Soares MSP, Pedra NS, Spohr L, da Silva Dos Santos F, de Farias AS, Alvez FL, de Moraes Meine B, Luduvico KP, Spanevello RM, Stefanello FM. Tannic Acid Attenuates Peripheral and Brain Changes in a Preclinical Rat Model of Glioblastoma by Modulating Oxidative Stress and Purinergic Signaling. Neurochem Res 2022; 47:1541-1552. [PMID: 35178643 DOI: 10.1007/s11064-022-03547-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Glioblastoma (GB) is a highly aggressive and invasive brain tumor; its treatment remains palliative. Tannic acid (TA) is a polyphenol widely found in foods and possesses antitumor and neuroprotective activities. This study aimed to investigate the effect of TA on oxidative stress parameters and the activity of ectonucleotidases in the serum, platelets, and lymphocytes and/or in the brain of rats with preclinical GB. Rats with GB were treated intragastrically with TA (50 mg/kg/day) for 15 days or with a vehicle. In the platelets of the animals with glioma, the adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and the catalase (CAT) activity decreased. Besides, the adenosine diphosphate (ADP) hydrolysis, adenosine (Ado) deamination, and the reactive oxygen species (ROS) and nitrite levels were increased in glioma animals; however, TA reversed ROS and nitrite levels and AMP hydrolysis alterations. In lymphocytes from animals with glioma, the ATP and ADP hydrolysis, as well as Ado deamination were increased; TA treatment countered this increase. In the brain of the animals with glioma, the ROS, nitrite, and thiobarbituric acid reactive substance (TBARS) levels increased and the thiol (SH) levels and CAT and superoxide dismutase (SOD) activities were decreased; TA treatment decreased the ROS and TBARS levels and restored the SOD activity. In the serum of the animals with glioma, the ATP hydrolysis decreased; TA treatment restored this parameter. Additionally, the ROS levels increased and the SH and SOD activity decreased by glioma implant; TA treatment enhanced nitrite levels and reversed SOD activity. Altogether, our results suggest that TA is an important target in the treatment of GB, as it modulates purinergic and redox systems.
Collapse
Affiliation(s)
- Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Alana Seixas de Farias
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Bernardo de Moraes Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil.
| |
Collapse
|
3
|
Upregulation of p53 by tannic acid treatment suppresses the proliferation of human colorectal carcinoma. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:587-602. [PMID: 36651555 DOI: 10.2478/acph-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 01/19/2023]
Abstract
The present study's objective is to clarify the molecular mechanisms of tannic acid effects on the viability of human colorectal carcinoma (CRC). Tannic acid is stable for up to 48 h and is localized in both cytoplasm and nucleus. It dose-dependently inhibited the viability of CRC cell lines; SW-620 and HT-29 with IC 50 values of 7.2 ± 0.8 and 37.6 ± 1.4 µmol L-1. Besides, metastatic, invasive, and colony formation properties of CRC cells were significantly inhibited following the tannic acid treatment (p < 0.001). Tannic acid has been found to modulate enzyme, protein, and gene expressions of NQO1 in different levels and the upregulation of protein/gene expressions of p53 (p < 0.001), which leads the cells to trigger apoptosis. In conclusion, the present in vitro study may supply a significant background for in vivo studies in which the molecular mechanisms of antioxidant and chemopreventive activities of tannic acid will completely clarify.
Collapse
|
4
|
Shendge AK, Basu T, Mandal N. Evaluation of anticancer activity of Clerodendrum viscosum leaves against breast carcinoma. Indian J Pharmacol 2021; 53:377-383. [PMID: 34854406 PMCID: PMC8641747 DOI: 10.4103/ijp.ijp_565_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/07/2020] [Accepted: 08/28/2021] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION The use of natural resources as medicines for cancer therapies has been described throughout history in the form of traditional medicines. However, many resources are still unidentified for their potent biological activities. Clerodendrum viscosum is a hill glory bower reported as a remedy against oxidative stress, skin diseases, and intestinal infections. MATERIALS AND METHODS We have collected the C. viscosum leaves and used for the preparation of 70% methanolic extract (CVLME). Then, CVLME has been confirmed for anticancer properties on various cancer cell lines by evaluating cytotoxicity, cell cycle analysis, induction of ROS and apoptosis, and nuclear fragmentation. Further, the phytochemical analysis of CVLME was evaluated through high-performance liquid chromatography. RESULTS Cell proliferation assay revealed the selective cytotoxicity of CVLME against breast cancer cell line (MCF-7). The FACS-based cell cycle analysis showed increased subG1 (apoptosis) population dose dependently. Further, the apoptosis-inducing effect of CVLME was confirmed by annexin staining. Flow cytometry and confocal microscopy revealed the selective ROS generation upon CVLME treatment. The confocal-based morphological study also revealed condensed and fragmented nuclear structure in CVLME-treated MCF-7 cells. Phytochemical investigations further indicated the presence of tannic acid, catechin, rutin, and reserpine which might be the reason for the anticancer activity of CVLME. CONCLUSION The above-combined results revealed the anticancer effect of CVLME, which may be due to the selective induction of ROS in breast carcinoma.
Collapse
Affiliation(s)
| | - Tapasree Basu
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
5
|
Ha L, Ryu U, Kang DC, Kim JK, Sun D, Kwon YE, Choi KM, Kim DP. Rapid Single-Step Growth of MOF Exoskeleton on Mammalian Cells for Enhanced Cytoprotection. ACS Biomater Sci Eng 2021; 7:3075-3081. [PMID: 34133131 DOI: 10.1021/acsbiomaterials.1c00539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian cells are promising agents for cell therapy, diagnostics, and drug delivery. For full utilization of the cells, development of an exoskeleton may be beneficial to protecting the cells against the environmental stresses and cytotoxins to which they are susceptible. We report here a rapid single-step method for growing metal-organic framework (MOF) exoskeletons on a mammalian cell surface under cytocompatible conditions. The MOF exoskeleton coating on the mammalian cells was developed via a one-pot biomimetic mineralization process. With the exoskeleton on, the individual cells were successfully protected against cell protease (i.e., Proteinase K), whereas smaller-sized nutrient transport across the exoskeleton was maintained. Moreover, vital cellular activities mediated by transmembrane GLUT transporter proteins were also unaffected by the MOF exoskeleton formation on the cell surfaces. Altogether, this ability to control the access of specific molecules to a single cell through the porous exoskeleton, along with the cytoprotection provided, should be valuable for biomedical applications of mammalian cells.
Collapse
Affiliation(s)
- Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - UnJin Ryu
- Department of Chemical and Biological Engineering and Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Dong-Chang Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jung-Kyun Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dengrong Sun
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering and Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
6
|
Soylu HM, Chevallier P, Copes F, Ponti F, Candiani G, Yurt F, Mantovani D. A Novel Strategy to Coat Dopamine-Functionalized Titanium Surfaces With Agarose-Based Hydrogels for the Controlled Release of Gentamicin. Front Cell Infect Microbiol 2021; 11:678081. [PMID: 34178721 PMCID: PMC8224171 DOI: 10.3389/fcimb.2021.678081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction The use of spinal implants for the treatment of back disorders is largely affected by the insurgence of infections at the implantation site. Antibacterial coatings have been proposed as a viable solution to limit such infections. However, despite being effective at short-term, conventional coatings lack the ability to prevent infections at medium and long-term. Hydrogel-based drug delivery systems may represent a solution controlling the release of the loaded antibacterial agents while improving cell integration. Agarose, in particular, is a biocompatible natural polysaccharide known to improve cell growth and already used in drug delivery system formulations. In this study, an agarose hydrogel-based coating has been developed for the controlled release of gentamicin (GS). Methods Sand blasted Ti6Al4V discs were grafted with dopamine (DOPA) solution. After, GS loaded agarose hydrogels have been produced and additioned with tannic acid (TA) and calcium chloride (CaCl2) as crosslinkers. The different GS-loaded hydrogel formulations were deposited on Ti6Al4V-DOPA surfaces, and allowed to react under UV irradiation. Surface topography, wettability and composition have been analyzed with profilometry, static contact angle measurement, XPS and FTIR spectroscopy analyses. GS release was performed under pseudo-physiological conditions up to 28 days and the released GS was quantified using a specific ELISA test. The cytotoxicity of the produced coatings against human cells have been tested, along with their antibacterial activity against S. aureus bacteria. Results A homogeneous coating was obtained with all the hydrogel formulations. Moreover, the coatings presented a hydrophilic behavior and micro-scale surface roughness. The addition of TA in the hydrogel formulations showed an increase in the release time compared to the normal GS-agarose hydrogels. Moreover, the GS released from these gels was able to significantly inhibit S. aureus growth compared to the GS-agarose hydrogels. The addition of CaCl2 to the gel formulation was able to significantly decrease cytotoxicity of the TA-modified hydrogels. Conclusions Due to their surface properties, low cytotoxicity and high antibacterial effects, the hereby proposed gentamicin-loaded agarose-hydrogels provide new insight, and represent a promising approach for the surface modification of spinal implants, greatly impacting their application in the orthopedic surgical scenario.
Collapse
Affiliation(s)
- H Melis Soylu
- Department Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Turkey
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| | - Federica Ponti
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada.,GenT LΛB and µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- GenT LΛB and µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Fatma Yurt
- Department Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Turkey.,Department Nuclear Applications, Institute Nuclear Science, Ege University, Bornova, Turkey
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| |
Collapse
|
7
|
Bona NP, Pedra NS, Azambuja JH, Soares MSP, Spohr L, Gelsleichter NE, de M Meine B, Sekine FG, Mendonça LT, de Oliveira FH, Braganhol E, Spanevello RM, da Silveira EF, Stefanello FM. Tannic acid elicits selective antitumoral activity in vitro and inhibits cancer cell growth in a preclinical model of glioblastoma multiforme. Metab Brain Dis 2020; 35:283-293. [PMID: 31773434 DOI: 10.1007/s11011-019-00519-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023]
Abstract
Glioblastoma is a devastating tumor affecting the central nervous system with infiltrative capacity, high proliferation rate and chemoresistance. Therefore, it is urgent to find new therapeutic alternatives that improve this prognosis. Herein, we focused on tannic acid (TA) a polyphenol with antioxidant and antiproliferative activities. In this work, the antitumor and antioxidant effects of TA on rat (C6) glioblastoma cells and their cytotoxicity relative to primary astrocyte cultures were evaluated in vitro. Cells were exposed to TA of 6.25 to 75 μM for 24, 48 and/or 72 h. In addition, colony formation, migration and cell adhesion were analyzed and flow cytometry was used to analyze cell death and cell cycle. Next, the action of TA was evaluated in a preclinical glioblastoma model performed on Wistar rats. In this protocol, the animals were treated with a dose of 50 mg/kg/day TA for 15 days. Our results demonstrated that TA induced in vitro selective antiglioma activity, not demonstrating cytotoxicity in astrocyte culture. It induced cell death by apoptosis and cell cycle arrest, reducing formation and size of colonies, cell migration/adhesion and showing to be a potential antioxidant. Interestingly, the antiglioma effect was also observed in vivo, as TA decreased tumor volume by 55%, accompanied by an increase in the area of intratumoral necrosis and infiltration of lymphocytes without causing systemic damage. To the best of our knowledge, this is the first study to report TA activity in a GBM preclinical model. Thus, this natural compound is promising as a treatment for glioblastoma.
Collapse
Affiliation(s)
- Natália P Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia S Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana H Azambuja
- Programa de Pós-Graduação em Biociências - Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Mayara S P Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luíza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nicolly E Gelsleichter
- Programa de Pós-Graduação em Biociências - Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Bernardo de M Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fernanda G Sekine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Lorenço T Mendonça
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francine H de Oliveira
- Departamento de Patologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências - Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Roselia M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elita F da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
8
|
Multari C, Miola M, Laviano F, Gerbaldo R, Pezzotti G, Debellis D, Verné E. Magnetoplasmonic nanoparticles for photothermal therapy. NANOTECHNOLOGY 2019; 30:255705. [PMID: 30790778 DOI: 10.1088/1361-6528/ab08f7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades the applications of nanotechnology in the biomedical field have attracted a lot of attention. Magnetic and gold nanoparticles (MNPs and GNPs) are now of interest as selective tools for tumour treatment, due to their unique properties and biocompatibility. In this paper, superparamagnetic iron oxide nanoparticles (MNPs) decorated with gold nanoparticles (GNPs) have been prepared by means of an innovative synthesis process using tannic acid as the reducing agent. The as-obtained nanoplatforms were characterized in terms of size, morphology, structure, composition, magnetic response and plasmonic properties. The results revealed that hybrid nanoplatforms (magnetoplasmonic nanoparticles, MPNPs) composed of a magnetic core and an external GNP decoration, acting in synergy, have been developed. Biological tests were also performed on both healthy cells and cancer cells exposed to different nanoparticle concentrations, upon laser irradiation. GNPs grafted onto the surface of MNPs revealed the ability to convert the received light into thermal energy, which was selective in its detrimental effect on cancer cells.
Collapse
Affiliation(s)
- C Multari
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|