1
|
Li J, Yao J, Qi L. Identification of TUBB2A as a Cancer-Immunity Cycle-Related Therapeutic Target in Triple-Negative Breast Cancer. Mol Biotechnol 2024; 66:2467-2480. [PMID: 37742297 DOI: 10.1007/s12033-023-00880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Triple negative breast cancer (TNBC) is a malignant subtype of breast cancer characterized by the absence of ER, PR, and HER2. We aimed to explore target gene from the perspective of cancer-immunity cycle, providing insights into treatment of TNBC. METHODS We obtained TNBC samples from METABRIC database and downloaded 4 datasets from GEO database, as well as an IMvigor210 dataset. WGCNA was applied to screen genes associated with cancer-immunity cycle in TNBC. GO, KEGG and GSEA analyses were performed to explore the target gene's potential functions and pathways. The binding motifs with transcription factors were predicted with FIMO. Immune infiltration analysis was conducted by CIBERSORT. RESULTS TUBB2A was screened out as our target gene which was negatively correlated with T cell recruitment in cancer-immunity cycle. TUBB2A expressed higher in TNBC samples than in normal samples. High expression of TUBB2A was associated with poor prognosis of TNBC. 12 transcription factors and 5 miRNAs might regulate TUBB2A's expression. The infiltration ratios of 7 types of immune cells such as CD8+ T cells, naive CD4+ T cells and activated memory CD4+ T cells were significantly lower in TUBB2A high expression group. TUBB2A was a potential drug target. CONCLUSION We screened a cancer-immunity cycle-related gene TUBB2A which was negatively correlated with T cell recruiting in TNBC. TUBB2A expressed higher in TNBC samples than in normal samples, associated with poor prognosis.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Jingchun Yao
- Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan, Huawei South Road, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
2
|
Li J, Yao J. CD8 + T cell‑related KCTD5 contributes to malignant progression and unfavorable clinical outcome of patients with triple‑negative breast cancer. Mol Med Rep 2024; 30:166. [PMID: 39027992 PMCID: PMC11267436 DOI: 10.3892/mmr.2024.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Triple‑negative breast cancer (TNBC) is a highly aggressive and heterogeneous subtype of breast cancer that lacks expression of estrogen receptor, progesterone receptor, and HER2, making it more challenging to treat with targeted therapies. The present study aimed to identify CD8+ T cell‑associated genes, which could provide insight into the mechanisms underlying TNBC to facilitate developing novel immunotherapies. TNBC datasets were downloaded from public databases including The Cancer Genome Atlas, Molecular Taxonomy of Breast Cancer International Consortium, and Gene Expression Omnibus. Candidate genes were identified integrating weighted gene co‑expression network analysis (WGCNA), differential gene expression, protein‑protein‑interaction network construction and univariate Cox regression analysis. Kaplan‑Meier survival, multivariate Cox regression and receiver operating characteristic analysis were performed to evaluate the prognostic value of hub genes. Knockdown experiments, alongside wound healing, Cell Counting Kit‑8 and Transwell migration and invasion assays were performed. In total, seven gene modules were associated with CD8+ T cells using WGCNA, among which potassium channel tetramerization domain 5 (KCTD5) was significantly upregulated in TNBC samples and was associated with poor prognosis. KCTD5 expression inversely associated with infiltration ratios of 'Macrophages M1', 'Plasma cells', and 'γδ T cells', but positively with 'activated Mast cells', 'Macrophages M0', and 'Macrophages M2'. As an independent prognostic indicator for TNBC, KCTD5 was also associated with drug sensitivity and the expression of programmed cell death protein 1, Cytotoxic T‑Lymphocyte‑Associated Protein 4 (CTLA4), CD274), Cluster of Differentiation 86 (CD86), Lymphocyte‑Activation Gene 3 (LAG3), T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT). Knockdown of KCTD5 significantly inhibited viability, migration and invasion of TNBC cells in vitro. KCTD5 was suggested to impact the tumor immune microenvironment by influencing the infiltration of immune cells and may serve as a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Jingchun Yao
- Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
3
|
Zhao Y, Zhao Y, Liu L, Li G, Wu Y, Cui Y, Xie L. Tumor-exosomal miR-205-5p as a diagnostic biomarker for colorectal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03647-6. [PMID: 39133387 DOI: 10.1007/s12094-024-03647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Tumor-derived exosomal miRNAs play crucial roles in cancer diagnosis. Current studies aim to identify exosomal miRNAs associated with colorectal cancer (CRC) that are noninvasive, sensitive, and specific. PATIENTS AND METHODS Exosomes were extracted from CRC patients and healthy donors via ultracentrifugation, followed by verification via transmission electron microscopy (TEM), qNano, and Western blot analysis. The differential expression levels and clinical characteristics of miR-205-5p were analyzed in CRC via data from The Cancer Genome Atlas (TCGA). Real-time quantitative PCR was used to assess the expression levels of exosomal miRNAs in 157 primary CRC patients, 20 patients with benign diseases, and 135 healthy donors. Predictions regarding target genes were made to guide further exploration of the disease's etiopathogenesis through bioinformatics. RESULTS Compared with that in healthy donors, the expression of miR-205-5p in colorectal cancer (CRC) patients was significantly lower, as determined through analysis of the TCGA database. We conducted a prediction and analysis of the functional enrichment of downstream target genes regulated by miR-205-5p. A lower level of exosomal miR-205-5p in the serum of CRC patients than in that of healthy controls (p < 0.0001) and patients with benign disease (p < 0.0001) was observed. Furthermore, the expression levels of exosomal miR-205-5p were significantly lower in early-stage CRC patients than in the comparison groups (p<0.001 and p < 0.0001). Notably, the expression levels of exosomal miR-205-5p significantly increased postoperatively (p = 0.0053). CONCLUSIONS The present study demonstrated that serum exosomal miR-205-5p may be a diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yapeng Zhao
- Department of Stomatology, Qinghai Red Cross Hospital, Xining, Qinghai, China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guanghao Li
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yawen Wu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanan Cui
- Shandong Second Medical University, Weifang, Shandong, China
| | - Li Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, Shandong Province, China.
| |
Collapse
|
4
|
Liu Y, Liu Y, Li Y, Wang T, Li B, Kong X, Li C. High expression of ACTL6A leads to poor prognosis of oral squamous cell carcinoma patients through promoting malignant progression. Head Neck 2024; 46:1450-1467. [PMID: 38523407 DOI: 10.1002/hed.27742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE The aim was to research ACTL6A's role in oral squamous cell carcinoma (OSCC). METHODS OSCC and normal samples were obtained from patients and public databases. GSEA was performed. CIBERSORT was utilized to analyze immune landscape. Kaplan-Meier survival analysis and multivariate Cox regression analysis were conducted. After knocking down ACTL6A, we performed MTT assay, transwell assays, and flow cytometry to detect the impact of knockdown. RESULTS ACTL6A expressed higher in OSCC samples than normal samples. The CNV and mutation rate of TP53 was higher in ACTL6A high-expression group. TFs E2F7 and TP63 and miRNA hsa-mir-381 were significantly related to ACTL6A. ACTL6A could influence immune microenvironment of OSCC. Knockdown of ACTL6A inhibited OSCC cells' proliferation, migration, and invasion. ACTL6A was able to predict OSCC prognosis independently. CONCLUSION ACTL6A expressed higher in OSCC than normal samples and it could be used as an independent prognostic marker in OSCC patients.
Collapse
Affiliation(s)
- Yi Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Yisha Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Bolong Li
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Xianchen Kong
- Department of Stomatology, Tianjin First Central Hospital, Tianjin, China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Ma Y, Han B, Yu Q, Zha N, Deng Z, Liang J, Yu R. Single-cell and bulk RNA sequencing data jointly reveals VDAC2's impacts on prognosis and immune landscape of NSCLC. Aging (Albany NY) 2024; 16:3160-3184. [PMID: 38382091 PMCID: PMC10929798 DOI: 10.18632/aging.205517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 02/23/2024]
Abstract
Non-small cell lung cancer (NSCLC) is characterized by stronger metastatic ability and worse prognosis. In NSCLC, hypoxia is a major cause of invasion and metastasis through promoting angiogenesis. In present study, NSCLC cell clusters were extracted from single cell-sequencing dataset GSE131907, which were combined with hypoxia-related genes to group clusters. qRT-PCR and western blot were used to validate the expression of target gene. Nine NSCLC clusters were extracted, which were divided into two hypoxia-related subgroups, C1 and C2. Totally 101 differentially expressed prognostic genes were identified between subgroups. Of which, VDAC2 showed excellent prognostic value for NSCLC and was selected for further analysis. VDAC2 was upregulated in tumor samples in TCGA and was correlated with advanced stages. In vitro experiments validated this trend. Five crucial immune cells showed differential infiltration proportions between high and low VDAC2 expression groups. VDAC2 knockdown significantly inhibited the proliferation and invasion ability of NSCLC cells. Integrating single cell and bulk sequencing data as well as wet lab experiments, hypoxia-related VDAC2 exhibited important prognostic value and showed the promise of becoming immune-therapy target in NSCLC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Bateer Han
- Department of Thoracic Surgery, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia Autonomous Region, China
| | - Qin Yu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia Autonomous Region, China
| | - Nashunbayaer Zha
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Zhiyuan Deng
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia Autonomous Region, China
| | - Junguo Liang
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolia Autonomous Region, China
| | - Rong Yu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Qian L, Li L, Li Y, Li S, Zhang B, Zhu Y, Yang B. LncRNA HOTAIR as a ceRNA is related to breast cancer risk and prognosis. Breast Cancer Res Treat 2023:10.1007/s10549-023-06982-4. [PMID: 37294527 DOI: 10.1007/s10549-023-06982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Breast cancer (BC) is one of the biggest threats to women's health. LncRNA HOTAIR is related to the recurrence and metastasis of BC. Whether HOTAIR can serve as an effective biomarker to distinguish BC patients with different prognosis need to be further studied. METHODS The miRNA and mRNA expression profile data of BC patients were downloaded from TCGA database. Univariate Cox regression was used to screen differential expression genes (DEGs). The miRcode database and miRWalk database were used to predict miRNA binding to HOTAIR and binding sites of miRNAs, respectively. Kaplan-Meier (KM) analysis was used to estimate the overall survival rate of BC patients. Finally, qRT-PCR and western blot were applied to evaluate the expression level of HOTAIR and mRNAs between BC cells and normal mammary cells. RESULTS The patients with high HOTAIR expression had poor prognosis in BC. Totally 10 genes correlated with BC prognosis were identified from 170 DEGs, among which PAX7, IYD, ZIC2, MS4A1, TPRXL, CD24, LHX1 were positively correlated with HOTAIR, while CHAD, NPY1R, TPRG1 were opposite. The levels of IYD, ZIC2, CD24 mRNA and protein were increased in BC tissues and BC cells. In BC cells, the levels of IYD, ZIC2 and CD24 mRNA and protein were significantly increased in HOTAIR overexpressed group. HOTAIR had the strongest interaction with hsa-miR-129-5p, followed by hsa-miR-107. CONCLUSION HOTAIR regulated the expression of downstream genes by interacting with 8 miRNAs and ultimately affected the prognosis of BC patients.
Collapse
Affiliation(s)
- Liyu Qian
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Li Li
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Li
- Department of Cardiac Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Bo Zhang
- Department of Immunology, College of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| | - Yu Zhu
- Department of Clinical Laboratory, Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, 300170, China.
- Department of Clinical Laboratory, Tianjin Third Center Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| | - Bing Yang
- Department of Cell Biology, College of Basic Medical Sciences, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
7
|
MiR-205-5p Functions as a Tumor Suppressor in Gastric Cancer Cells through Downregulating FAM84B. JOURNAL OF ONCOLOGY 2022; 2022:8267891. [PMID: 35669244 PMCID: PMC9166972 DOI: 10.1155/2022/8267891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) participate in the formation of multiple diseases, including gastric cancer (GC), through modulating specific targets. Here, we explored the functions and regulatory mechanisms of miR-205-5p in GC. MiR-205-5p levels were detected in GC cells through qRT-PCR. Besides, the role of miR-205-5p in cell proliferation, cell apoptosis, cell cycle, cell invasion, and metastasis was assessed through CCK-8 assay, colony formation, flow cytometry, scratch assay, transwell, and western blot. Moreover, the Starbase website was used to predict the target gene of miR-205-5p, further verified by a dual-luciferase reporter assay. Furthermore, the functional effects of the family with sequence similarity 84 member B (FAM84B) on GC mediated by miR-205-5p upregulation were further investigated. MiR-205-5p expression was decreased in GC cells. Upregulation of miR-205-5p inhibited cell proliferation and metastasis and induced apoptosis and cycle arrest of GC cells. Moreover, FAM84B was predicted and confirmed as a target of miR-205-5p and negatively related to miR-205-5p. Mechanically, FAM84B overexpression partially rescued the functional effects of miR-205-5p upregulation on GC cell progression. This study suggests the potential of miR-205-5p/FAM84B as novel targets for the treatment of GC.
Collapse
|
8
|
DNAJA1 Stabilizes EF1A1 to Promote Cell Proliferation and Metastasis of Liver Cancer Mediated by miR-205-5p. JOURNAL OF ONCOLOGY 2022; 2022:2292481. [PMID: 35586205 PMCID: PMC9110222 DOI: 10.1155/2022/2292481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Liver cancer is one of the most common and aggressive malignancies worldwide with poor prognosis. Studies on pathogenesis of liver cancer are urgently demanded to develop better treatment strategy. Here, we found that overexpression of DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1) increased cell proliferation, invasion, and angiogenesis in Huh 7 and HepG2 cells, while depletion of DNAJA1 in MHCC-97H and HCC-M3 showed opposite effects. In vivo functional assays indicated that DNAJA1 promoted tumor growth and pulmonary metastasis in mice. Mechanistically, as a direct target of miR-205-5p, DNAJA1 promoted proliferation and metastasis of liver cancer cells by stabilizing eukaryotic elongation factor 1A1 (EF1A1). Moreover, DNAJA was markedly upregulated in liver cancer tissues (P < 0.05) and was significantly associated with poor prognosis. And its expression was correlated with differentiation (P < 0.001), dissemination (P < 0.001), and serum AFP (P = 0.029). The mRNA levels of miR-205-5p and DNAJA1 were negatively correlated in liver cancer. In conclusion, our study reveals that DNAJA1 acts as an oncogene in liver cancer via miR-205-5p/EF1A1 axis and might be a potential biomarker to predict the prognosis for liver cancer patients.
Collapse
|
9
|
Qi J, Wang T, Zhang Z, Yin Z, Liu Y, Ma L, Pei S, Dong Z, Han G. Circ-Ctnnb1 regulates neuronal injury in spinal cord injury through Wnt/β-catenin signaling pathway. Dev Neurosci 2021; 44:131-141. [PMID: 34929706 DOI: 10.1159/000521172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
STUDY DESIGN Spinal cord injury (SCI) rat model and cell model were established for in vivo and in vitro experiments. Functional assays were utilized to explore the role of the circRNAs derived from catenin beta 1 (mmu_circ_0001859, circ-Ctnnb1 herein) in regulating neuronal cell viability and apoptosis. Bioinformatics analysis and mechanism experiments were conducted to assess the underlying molecular mechanism of circ-Ctnnb1. OBJECTIVE We aimed to probe into the biological function of circ-Ctnnb1 in neuronal cells of SCI. METHODS The rat model of SCI and hypoxia-induced cell model were constructed to examine circ-Ctnnb1 expression in SCI through quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR). Basso, Beattie and Bresnahan (BBB) score was utilized for evaluating the neurological function. Terminal-deoxynucleoitidyl Transferase Mediated Nick End labeling (TUNEL) assays were performed to assess the apoptosis of neuronal cells. RNase R and Actinomycin D (ActD) were used to treat cells to evaluate the stability of circ-Ctnnb1. RESULTS Circ-Ctnnb1 was highly expressed in SCI rat models and hypoxia-induced neuronal cells, and its deletion elevated the apoptosis rate of hypoxia-induced neuronal cells. Furthermore, circ-Ctnnb1 activated the Wnt/β-catenin signaling pathway via sponging mircoRNA-205-5p (miR-205-5p) to up-regulate Ctnnb1 and Wnt family member 2B (Wnt2b). CONCLUSION Circ-Ctnnb1 promotes SCI through regulating Wnt/β-catenin signaling via modulating the miR-205-5p/Ctnnb1/Wnt2b axis.
Collapse
Affiliation(s)
- Jialong Qi
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Tao Wang
- Spine Surgery, Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhidong Zhang
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Zongsheng Yin
- Joint Surgery Center, Department of Orthopaedics, The First Hospital of Anhui Medical University, Hefei, China
| | - Yiming Liu
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China,
| | - Li Ma
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Shaobao Pei
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Zhou Dong
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| | - Guosong Han
- Spine Surgery, Department of Orthopaedics, The Third Hospital of Anhui Medical University, The First People's Hospital of Hefei City, Hefei, China
| |
Collapse
|
10
|
MicroRNAs as Potential Biomarkers in Pituitary Adenomas. Noncoding RNA 2021; 7:ncrna7030055. [PMID: 34564317 PMCID: PMC8482103 DOI: 10.3390/ncrna7030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas (PAs) are one of the most common lesions of intracranial neoplasms, occurring in approximately 15% of the general population. They are typically benign, although some adenomas show aggressive behavior, exhibiting rapid growth, drug resistance, and invasion of surrounding tissues. Despite ongoing improvements in diagnostic and therapeutic strategies, late first diagnosis is common, and patients with PAs are prone to relapse. Therefore, earlier diagnosis and prevention of recurrence are of importance to improve patient care. MicroRNAs (miRNAs) are short non-coding single stranded RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies indicate that a deregulation of their expression patterns is related with pituitary tumorigenesis, suggesting that these small molecules could play a critical role in contributing to tumorigenesis and the onset of these tumors by acting either as oncosuppressors or as oncogenes, depending on the biological context. This paper provides an overview of miRNAs involved in PA tumorigenesis, which might serve as novel potential diagnostic and prognostic non-invasive biomarkers, and for the future development of miRNA-based therapeutic strategies for PAs.
Collapse
|
11
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
12
|
Xiao Z, Reddy DPK, Xue C, Liu X, Chen X, Li J, Ling X, Zheng S. Profiling of miR-205/P4HA3 Following Angiotensin II-Induced Atrial Fibrosis: Implications for Atrial Fibrillation. Front Cardiovasc Med 2021; 8:609300. [PMID: 33981730 PMCID: PMC8107220 DOI: 10.3389/fcvm.2021.609300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: Atrial fibroblasts are the main component of atrial fibrosis. Data in previous studies proved the implication of miRNAs in AF progression and the association of miR-205 with cancer associated-fibroblasts, while no evidence supported the implication of miR-205 in atrial fibrosis. Therefore, this study aims to explore the effect and mechanism of miR-205/P4HA3 axis on atrial fibrosis. Methods: Angiotensin II (Ang II) was used to induce atrial fibrosis model in rats, which was verified by H&E staining and Masson staining. qRT-PCR and Western blot were applied to measure the expressions of miR-205, P4HA3, collagen I, and α-SMA. The rat atrial fibroblasts were isolated and then subjected to Ang II treatment or cell transfection for determination of cell biological functions using CCK-8, BrdU assay, TUNEL staining, and cell scratch assay. qRT-PCR and Western blot was applied to analyze the expressions of miR-205, P4HA3, collagen I, α-SMA, JNK, and p-JNK in atrial fibroblasts. Dual-luciferase reporter gene assay and RNA immune-precipitation experiment was employed to verify the binding relationship between miR-205 and P4HA3. Results: Ang II induced rats had disordered arrangement of atrial muscles with uneven nuclear sizes and necrotic atrial myocytes, and increased collagen deposition, in which elevated expressions of P4HA3, collagen I, and α-SMA as well as suppressed expression level of miR-205 were found. In vitro, Ang II treatment in atrial fibroblasts with overexpression of P4HA3 facilitated cellular migration and proliferation, with the induction of JNK signaling pathway. However, these trends were reversed after transfection with miR-205 mimic. P4HA3 is a target gene of miR-205. Conclusion: The miR-205/P4HA3 axis is implicated in atrial fibrosis by inhibition of rat fibroblast proliferation and migration and the inactivation of JNK signaling pathway.
Collapse
Affiliation(s)
- Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Desai Pavan Kumar Reddy
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuqing Xue
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiong Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Yang J, Huang Y, Dong B, Dai Y. Long noncoding RNA DLEU2 drives the malignant behaviors of thyroid cancer through mediating the miR-205-5p/TNFAIP8 axis. Endocr Connect 2021; 10:471-483. [PMID: 33764889 PMCID: PMC8111323 DOI: 10.1530/ec-21-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Considering the plight in thyroid cancer therapy, we aimed to find novel therapeutic targets from a molecular perspective. METHODS Quantitative real-time PCR (qRT-PCR) and Western blot assay were carried out to determine RNA and protein expression. Cell counting kit-8 (CCK8) assay, flow cytometry, transwell migration assay and aerobic glycolysis analysis were performed to analyze cell proliferation, apoptosis, migration and aerobic glycolysis of thyroid cancer cells. MiRcode and Starbase software were used to search the downstream genes of long noncoding RNA (lncRNA) deleted in lymphocytic leukemia 2 (DLEU2) and microRNA-205-5p (miR-205-5p), and the intermolecular combination was confirmed by dual-luciferase reporter assay. The in vivo role of DLEU2 in tumor growth was verified using the murine xenograft model. RESULTS DLEU2 and tumor necrosis factor-α-induced protein 8 (TNFAIP8) were highly expressed in thyroid cancer tissues and cell lines. DLEU2 and TNRAIP8 promoted the proliferation, migration and aerobic glycolysis and restrained the apoptosis of thyroid cancer cells. DLEU2/miR-205-5p/TNFAIP8 signaling axis was identified in thyroid cancer cells. TNFAIP8 overexpression largely rescued the malignant phenotypes in DLEU2-silenced thyroid cancer cells. DLEU2 positively regulated TNFAIP8 expression by acting as miR-205-5p sponge in thyroid cancer cells. DLEU2 silencing blocked the growth of xenograft tumors in vivo. CONCLUSION lncRNA DLEU2 exerted a pro-tumor role to promote proliferation, migration and aerobic glycolysis while repressing the apoptosis of thyroid cancer cells via miR-205-5p/TNFAIP8 axis.
Collapse
Affiliation(s)
- Jiwen Yang
- Department of Nuclear Medicine, Yijishan Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
| | - Yayin Huang
- Department of Clinical Laboratory, The Second People’s Hospital of Wuhu, Wuhu City, Anhui Province, China
| | - Bohan Dong
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu City, Anhui Province, China
| | - Yunhai Dai
- Department of Nuclear Medicine, Yijishan Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
- Correspondence should be addressed to Y Dai:
| |
Collapse
|
14
|
Overexpression of microRNA-205-5p exerts suppressive effects on stem cell drug resistance in gallbladder cancer by down-regulating PRKCE. Biosci Rep 2021; 40:226278. [PMID: 32869841 PMCID: PMC7533283 DOI: 10.1042/bsr20194509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Some microRNAs (miRs or miRNAs) have been reported to function as tumor suppressors in gallbladder cancer (GBC). However, the specific effect of miR-205-5p on GBC remains unclear. The objective of the present study was to unravel the effects of miR-205-5p on the drug resistance in GBC. For this purpose, the expression of miR-205-5p and protein kinase C ϵ (PRKCE) was quantified in the peripheral blood sample harvested from GBC patients and healthy volunteers. Then the relationship between miR-205-5p and PRKCE was validated. After isolating the GBC stem cells, ectopic expression and depletion experiments were conducted to analyze the effect of miR-205-5p and PRKCE on cell proliferation, drug resistance, apoptosis, and colony formation rate as well as the expression of apoptotic factors (Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and cleaved caspase 3). Finally, the mouse xenograft model of GBC was established to verify the function of miR-205-5p in vivo. Intriguingly, our results manifested that miR-205-5p was down-regulated, while PRKCE was up-regulated in peripheral blood samples and stem cells of patients with GBC. Moreover, miR-205-5p targeted PRKCE and negatively regulated its expression. The overexpression of miR-205-5p or silencing of PRKCE inhibited the drug resistance, proliferation, and colony formation rate while promoting apoptosis of GBC stem cells. Additionally, the overexpression of miR-205-5p attenuated drug resistance to gemcitabine but promoted the gemcitabine-induced cell apoptosis by inhibiting the PRKCE in vivo. Overall, an intimate correlation between miR-205-5p and PRKCE is a key determinant of drug resistance of GBC stem cells, thus, suggesting a novel miR-205-5p-based clinical intervention target for GBC patients.
Collapse
|
15
|
Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem Cell Rev Rep 2021; 17:471-501. [PMID: 33398717 DOI: 10.1007/s12015-020-10082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow mesenchymal stem cells have been investigated for many years, especially for tissue regeneration, and have inherent limitations. One of the rapidly developing fields in the scientific world in recent years is extracellular vesicles. Especially, bone marrow mesenchymal stem cell originated extracellular vesicles are known to have positive contributions in tissue regeneration, and these extracellular vesicles have also been used as gene transfer systems for cellular therapy. Through gene expression analysis and bioinformatics tools, it is possible to determine which genes have changed in the targeted tissue or cell and which miRNAs that can correct this gene expression disorder. This approach connecting the stem cell, extracellular vesicles, epigenetics regulation and bioinformatics fields is one of the promising areas for the treatment of diseases in the future. With this review, it is aimed to present the studies carried out for the use of bone marrow stem cell-derived extracellular vesicles loaded with targeted miRNAs in different in vivo and in vitro human disease models and to discuss recent developments in this field.
Collapse
|
16
|
Epigenetic regulation of VENTXP1 suppresses tumor proliferation via miR-205-5p/ANKRD2/NF-kB signaling in head and neck squamous cell carcinoma. Cell Death Dis 2020; 11:838. [PMID: 33037177 PMCID: PMC7547684 DOI: 10.1038/s41419-020-03057-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play important roles in tumor development and progression. However, their involvement in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Epigenetic regulation is one major mechanism utilized by cancer cells to control lncRNA expression. We identified that lncRNA VENTXP1 was epigenetically silenced in multiple cancer types, and its lower expression was correlated with poorer survival in HNSCC patients. Through in silico analysis and experimental validation, we identified miR-205-5p and its direct interacting partner of VENTXP1, which regulates HNSCC cell proliferation and tumorigenicity. Using RNA-seq and differential gene expression analysis, we further identified ANKRD2 as a miR-205-5p target, which plays an essential role in modulating NF-kB signaling. These findings suggest that VENTXP1 inhibits tumor growth via suppressing miR-205-5p/ANKRD2-mediated NF-kB signaling in HNSCC. Thus, pharmaceutical targeting of DNA methylation to restore VENTXP1 expression might constitute a therapeutic strategy for HNSCC.
Collapse
|
17
|
Fang T, Jiang YX, Chen L, Huang L, Tian XH, Zhou YD, Nagle DG, Zhang DD. Coix Seed Oil Exerts an Anti-Triple-Negative Breast Cancer Effect by Disrupting miR-205/S1PR1 Axis. Front Pharmacol 2020; 11:529962. [PMID: 33101013 PMCID: PMC7556270 DOI: 10.3389/fphar.2020.529962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Coix Seed Oil (CSO) possesses a wide range of pharmacological activities. Kanglaite Injection, a commercial product of CSO, has been used clinically as an anticancer drug in China for decades. However, its molecular mechanisms on triple-negative breast cancer (TNBC) remains to be elucidated. In this study, the effect of CSO was evaluated on murine TNBC 4T1 cells and the orthotopic tumor-bearing mouse model and underlying mechanisms were explored. CSO suppressed cell proliferation, colony formation in vitro, and tumor growth in vivo. miR-205-5p was substantially altered in CSO treated tumor tissues compared to the control group by miRNA-sequencing analysis. Sphingomyelin metabolism (SM) decreased in serum in model group compared to the control group, while it increased by CSO administration by lipid metabolomics analysis. The expression of sphingosine 1 phosphate receptor 1 (S1PR1), the critical effector of SM, was downregulated upon CSO treatment. Mechanically, miRNA-205 directly targeted S1PR1 to regulate SM and cell proliferation. CSO reduced the expression of S1PR1, cyclinD1, and phosphorylation levels of STAT3, MAPK, and AKT while upregulated p27. These results revealed that CSO exerted an anti-TNBC effect via the miR-205/S1PR1 axis to regulate sphingomyelin metabolism, and the downstream STAT3/MAPK/AKT signal pathways were partly involved.
Collapse
Affiliation(s)
- Ting Fang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi-Xin Jiang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Huang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Hui Tian
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Misissippi, MS, United States
| | - Dale G Nagle
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences (RIPS), School of Pharmacy, University of Mississippi, University, Mississippi, MS, United States
| | - Dan-Dan Zhang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
19
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
20
|
Coordinated AR and microRNA regulation in prostate cancer. Asian J Urol 2020; 7:233-250. [PMID: 32742925 PMCID: PMC7385519 DOI: 10.1016/j.ajur.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ∼22 nt non-coding RNAs that regulate target gene, often through association with 3′ untranslated regions (3′UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets.
Collapse
|
21
|
Tao P, Yang B, Zhang H, Sun L, Wang Y, Zheng W. The overexpression of lncRNA MEG3 inhibits cell viability and invasion and promotes apoptosis in ovarian cancer by sponging miR-205-5p. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:869-879. [PMID: 32509057 PMCID: PMC7270692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 06/11/2023]
Abstract
PURPOSE Ovarian cancer is a common and fatal cancer in women. The long non-coding RNA (lncRNA) MEG3 was reported to affect the cellular processes of ovarian cancer, but the mechanisms remain unclear. Here, we aimed to explore the potential regulatory mechanism of MEG3 in ovarian cancer. MATERIALS AND METHODS A reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted to analyze the expression levels of MEG3 and miR-205-5p in tissues and cell lines. An MTT assay was utilized to determine the cell viability of ovarian cancer SKOV-3 and OVCAR-8 cells. A flow cytometry analysis was employed to disclose the ovarian cancer cell apoptosis. The migration and invasion of SKOV-3 and OVCAR-8 cells were examined using a Transwell assay. A bioinformatics analysis indicated miR-205-5p as a direct target of MEG3, and a luciferase reporter assay was conducted to validate the interaction between MEG3 and miR-205-5p. RESULTS MEG3 was significantly down-regulated, while miR-205-5p was up-regulated in ovarian cancer tissues and cell lines. The overexpression of MEG3 and the knockdown of miR-205-5p inhibited cell viability, migration and invasion but promoted the apoptosis rate in ovarian cancer cells. MiR-205-5p was identified as a downstream gene of MEG3 and is negatively regulated by MEG3. The introduction of miR-205-5p reversed the up-regulation of MEG3-mediated suppression effects on cell viability, migration and invasion and increased cell apoptosis in ovarian cancer cells. CONCLUSION The overexpression of lncRNA MEG3 inhibits cell proliferation and cell invasion and promotes apoptosis in ovarian cancer by sponging miR-205-5p.
Collapse
Affiliation(s)
- Pingping Tao
- Department of Obstetrics and Gynecology, Pudong New Area People’s Hospital Affiliated to Shanghai Health UniversityNo. 490, Chuanhuan South Road, Pudong New District, Shanghai, China
| | - Binlie Yang
- Department of Obstetrics and Gynecology, Pudong New Area People’s Hospital Affiliated to Shanghai Health UniversityNo. 490, Chuanhuan South Road, Pudong New District, Shanghai, China
| | - Huiya Zhang
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University, School of MedicineNo. 568 Zhongxing North Road, Yuecheng District, Shaoxing 201299, Zhejiang, China
| | - Liyan Sun
- Department of Obstetrics and Gynecology, Pudong New Area People’s Hospital Affiliated to Shanghai Health UniversityNo. 490, Chuanhuan South Road, Pudong New District, Shanghai, China
| | - Yungen Wang
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University, School of MedicineNo. 568 Zhongxing North Road, Yuecheng District, Shaoxing 201299, Zhejiang, China
| | - Weiping Zheng
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University, School of MedicineNo. 568 Zhongxing North Road, Yuecheng District, Shaoxing 201299, Zhejiang, China
| |
Collapse
|
22
|
Liu H, Li A, Sun Z, Zhang J, Xu H. Long non-coding RNA NEAT1 promotes colorectal cancer progression by regulating miR-205-5p/VEGFA axis. Hum Cell 2020; 33:386-396. [PMID: 32065361 DOI: 10.1007/s13577-019-00301-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) play key roles in tumorigenesis. It has been reported that the lncRNA nuclear-enriched abundant transcript 1 (NEAT1) may act as an oncogenic regulator in several cancers. However, the biological mechanism of action of NEAT1, particularly the miRNA sponge role in colorectal cancer (CRC), has not been fully elucidated. In our study, the expression of NEAT1, miR-205-5p, and vascular endothelial growth factor A (VEGFA) in CRC cell lines were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. Cell migration and invasion were examined by wound healing and transwell assays, respectively. RNA-binding protein immunoprecipitation (RIP), and dual-luciferase and RNA pull-down assays were conducted to determine the correlation between miR-205-5p and NEAT1 or VEGFA. VEGFA, matrix metalloproteinase (MMP)2, and MMP9 protein and mRNA expression were measured by western blotting and RT-qPCR analysis, respectively. Our results demonstrated high expression of NEAT1 and VEGFA and low expression of miR-205-5p in CRC cell lines. The RIP and dual-luciferase assays confirmed miR-205-5p as a target of NEAT1. In addition, VEGFA was identified as a direct target of miR-205-5p. Inhibition of NEAT1 or overexpression of miR-205-5p was able to repress VEGFA expression. Moreover, downregulation of NEAT1 and VEGFA inhibited cell proliferation, migration, and invasion. NEAT1 overexpression facilitated tumor growth by modulating miR-205-5p. Taken together, lncRNA NEAT1 was found to be upregulated in CRC cell lines, promoting CRC cell proliferation, migration, and invasion through regulating the miR-205-5p/VEGFA signaling pathway. These findings suggest that NEAT1 may be a promising biomarker in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Huijie Liu
- Department of Breast Oncology, Xiang Yang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Sciences, 136 Jingzhou Street, Xiangyang, 441021, Hubei, China
| | - Aiyi Li
- Disinfection Supply Center, The Second People's Hospital of Lianyungang, Lianyungang, 222023, China
| | - Zhichao Sun
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, 222023, China
| | - Jingyu Zhang
- Department of Tumor-Chemotherapy, The Second People's Hospital of Lianyungang, 161 Xingfu Road, Haizhou, Lianyungang, 222023, Jiangsu, China.
| | - Hua Xu
- Department of Breast Oncology, Xiang Yang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Sciences, 136 Jingzhou Street, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
23
|
Chemotherapeutic Stress Influences Epithelial-Mesenchymal Transition and Stemness in Cancer Stem Cells of Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:ijms21020404. [PMID: 31936348 PMCID: PMC7014166 DOI: 10.3390/ijms21020404] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by the absence of estrogen and progesterone receptors (ER, PR) and lacking an overexpression of human epidermal growth factor receptor 2 (HER2). Apart from this lack of therapeutic targets, TNBC also shows an increased capacity for early metastasis and therapy resistance. Currently, many TNBC patients receive neoadjuvant chemotherapy (NACT) upon detection of the disease. With TNBC likely being driven at least in part by a cancer stem-like cell type, we wanted to evaluate the response of primary cancer stem cells (CSCs) to standard chemotherapeutics. Therefore, we set up a survival model using primary CSCs to mimic tumor cells in patients under chemotherapy. Breast cancer stem cells (BCSCs) were exposed to chemotherapeutics with a sublethal dose for six days. Surviving cells were allowed to recover in culture medium without chemotherapeutics. Surviving and recovered cells were examined in regard to proliferation, migratory capacity, sphere forming capacity, epithelial–mesenchymal transition (EMT) factor expression at the mRNA level, and cancer-related microRNA (miRNA) profile. Our results indicate that chemotherapeutic stress enhanced sphere forming capacity of BCSCs, and changed cell morphology and EMT-related gene expression at the mRNA level, whereas the migratory capacity was unaffected. Six miRNAs were identified as potential regulators in this process.
Collapse
|
24
|
Oltra M, Vidal-Gil L, Maisto R, Sancho-Pelluz J, Barcia JM. Oxidative stress-induced angiogenesis is mediated by miR-205-5p. J Cell Mol Med 2019; 24:1428-1436. [PMID: 31863632 PMCID: PMC6991635 DOI: 10.1111/jcmm.14822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
miR‐205‐5p is known to be involved in VEGF‐related angiogenesis and seems to regulate associated cell signalling pathways, such as cell migration, proliferation and apoptosis. Therefore, several studies have focused on the potential role of miR‐205‐5p as an anti‐angiogenic factor. Vascular proliferation is observed in diabetic retinopathy and the ‘wet’ form of age‐related macular degeneration. Today, the most common treatments against these eye‐related diseases are anti‐VEGF therapies. In addition, both AMD and DR are typically associated with oxidative stress; hence, the use of antioxidant agents is accepted as a co‐adjuvant therapy for these patients. According to previous data, ARPE‐19 cells release pro‐angiogenic factors when exposed to oxidative insult, leading to angiogenesis. Matching these data, results reported here, indicate that miR‐205‐5p is modulated by oxidative stress and regulates VEGFA‐angiogenesis. Hence, miR‐205‐5p is proposed as a candidate against eye‐related proliferative diseases.
Collapse
Affiliation(s)
- Maria Oltra
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Lorena Vidal-Gil
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Rosa Maisto
- Department of Experimental Medicine, Università degli studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Javier Sancho-Pelluz
- Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Jorge M Barcia
- Neurobiología y Neurofisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
25
|
Ma C, Shi X, Guo W, Feng F, Wang G. miR-205-5p downregulation decreases gemcitabine sensitivity of breast cancer cells via ERp29 upregulation. Exp Ther Med 2019; 18:3525-3533. [PMID: 31602229 PMCID: PMC6777311 DOI: 10.3892/etm.2019.7962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide, and the incidence and mortality rates are increasing every year. Dysregulation of microRNAs (miRNAs or miRs) is an important step in the initiation and development of breast cancer. Previous studies demonstrated that miR-205-5p is closely associated with occurrence and development of breast cancer; however, underlying mechanisms remain unclear. In the present study, reverse transcription-quantitative polymerase chain reaction assays were used to analyze miR-195-5p and endoplasmic reticulum protein 29 (ERp29) levels in breast cancer and matched normal tissues. Western blot analysis was performed to analyze ERp29 and heat shock protein 27 (HSP27) protein expression levels. Cell viability, flow cytometry and luciferase reporter assay were used to examine cell proliferation, apoptosis and direct miRNA-mRNA binding, respectively. The results revealed that miR-205-5p expression in breast cancer tissues and cell lines was decreased compared with normal tissues and a normal cell line. Overexpression of miR-205-5p significantly augmented cytotoxicity effects of gemcitabine treatment in MDA-MB-231 and BT549 cells. It was observed that miR-205-5p negatively regulated ERp29 expression in breast cancer cells. Dual luciferase assays confirmed that ERp29 was a target of miR-205-5p in breast cancer cells. Additionally, following the established gemcitabine-resistant MDA-MB-231 cells (MDA-MB-231/GEM), ERp29 and HSP27 expression was upregulated and miR-205-5p was downregulated compared with parental cells. Overexpression of miR-205-5p reversed gemcitabine resistance in MDA-MB-231/GEM cells. In conclusion, the present study indicated that miR-205-5p may inhibit gemcitabine resistance in breast cancer cells via inhibition of ERp29 expression.
Collapse
Affiliation(s)
- Changpo Ma
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin 301800, P.R. China
| | - Xuejun Shi
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin 301800, P.R. China
| | - Wenchao Guo
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin 301800, P.R. China
| | - Fukai Feng
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin 301800, P.R. China
| | - Guangshun Wang
- Thoracic Surgery Department, Tianjin Baodi People's Hospital, Tianjin 301800, P.R. China
| |
Collapse
|
26
|
Huang J, Wang X, Wen G, Ren Y. miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncol Rep 2019; 42:1677-1688. [PMID: 31545453 PMCID: PMC6775807 DOI: 10.3892/or.2019.7307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of various types of cancers. Dysregulation of miR-205-5p has been reported in various types of human cancer. However, little is known concerning the role of miR-205-5p in renal cell carcinoma (RCC). The pr~esent study was designed to investigate the role of miR-205-5p in RCC. The expression of miR-205-5p was measured in clear cell renal cell carcinoma (ccRCC) tissues and cell lines using RT-qPCR. RCC cell lines were transfected with miR-205-5p mimics. CCK-8 assays, wound healing assays, Matrigel invasion assays and nucleosome ELISAs were used to assess the effects of miR-205-5p on cell growth, migration, invasion and apoptosis, respectively. Western blotting was employed to detect changes in protein levels. Bioinformatic analyses and luciferase reporter assays were performed to identify the potential targets of miR-205-5p. Mouse xenograft models were used to verify the effect of miR-205-5p in vivo. The expression of miR-205-5p was found to be downregulated in 25 RCC tissues compared to that noted in the adjacent normal tissues. Decreased expression of miR-205-5p was associated with poor clinical outcomes. Based on the results of the in vitro experiments, overexpression of miR-205-5p reduced RCC cell proliferation, invasion and migration. Overexpression of miR-205-5p also promoted apoptosis and inhibited the EMT in RCC cells. Moreover, the PI3K/Akt signaling pathway was found to be negatively regulated by miR-205-5p. Bioinformatic analyses and luciferase reporter assays revealed that miR-205-5p directly targeted the 3′-UTR of vascular endothelial growth factor A (VEGFA). Furthermore, miR-205-5p negatively regulated the expression of VEGFA in ccRCC cell lines. In ccRCC tissues, miR-205-5p expression was inversely correlated with VEGFA expression. Moreover, overexpression of miR-205-5p inhibited RCC growth in vivo in a mouse xenograft model. Overall, miR-205-5p functions as a tumor suppressor in RCC by targeting VEGFA and the PI3K/Akt signaling pathway, providing a potential therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jianjun Huang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Wang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Guobing Wen
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
27
|
Yao L, Shi W, Gu J. Micro-RNA 205-5p is Involved in the Progression of Gastric Cancer and Targets Phosphatase and Tensin Homolog (PTEN) in SGC-7901 Human Gastric Cancer Cells. Med Sci Monit 2019; 25:6367-6377. [PMID: 31444971 PMCID: PMC6724565 DOI: 10.12659/msm.915970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to investigate the role of micro-RNA 205-5p (miR-205-5p) in the progression of gastric cancer, and the target of miR-205-5p in human gastric cancer cells in vitro. Material/Methods Expression of miR-205-5p and PTEN in gastric cancer tissue samples and adjacent normal gastric tissue from 35 patients was studied using immunohistochemistry and in situ hybridization. SGC-7901 human gastric cancer cells included a normal control (NC) group, a group transfected with empty vector (Vector), a group treated with miR-205-5p inhibitor (miR-inhibitor), and a group treated with miR-205-5p inhibitor and small interfering PTEN mRNA (miR-inhibitor+si-PTEN). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measured miR-205-5p expression, cell proliferation was measured by MTT assay, cell apoptosis by flow cytometry, transwell and wound healing assays measured cell migration, and transmission electron microscopy (TEM) showed ultrastructural changes in SGC-7901 cells. PTEN, AKT and p-AKT protein expression were measured using Western blot. The correlation between miR-205-5p and PTEN was analyzed using a dual-luciferase reporter assay. Results Increased expression of miR-205-5p and PTEN in gastric cancer tissues were correlated with tumor stage. In SGC-7901 cells, miR-205-5p mRNA expression in the miR-inhibitor and miR-inhibitor+si-PTEN groups was significantly lower than that in the NC group (P<0.001). In the miR-inhibitor group, cell proliferation was significantly decreased, and apoptosis was significantly increased (P<0.001). Conclusions In gastric cancer, increased expression of miR-205-5p was associated with tumor stage, and in SGC-7901 cells PTEN was a target gene for miR-205-5p.
Collapse
Affiliation(s)
- Lina Yao
- Department of Clinical Laboratory, The First People's Hospital of Changzhou, Changzhou, Jiangsu, Chile
| | - Weifeng Shi
- Department of Clinical Laboratory, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| | - Jianwen Gu
- Department of Clinical Laboratory, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
28
|
Xu K, Xiong W, Zhao S, Wang B. MicroRNA-106b serves as a prognostic biomarker and is associated with cell proliferation, migration, and invasion in osteosarcoma. Oncol Lett 2019; 18:3342-3348. [PMID: 31452813 DOI: 10.3892/ol.2019.10666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to be involved in tumor progression of various human malignancies. The purpose of this study was to investigate the expression patterns and prognostic value of microRNA-106b (miR-106b) in osteosarcoma (OS) and to examine its functional role in OS progression. Reverse transcription-quantitative PCR (RT-qPCR) was used to estimate the expression of miR-106b in OS tissues and cells. The prognostic value of miR-106b in OS was evaluated by plotting Kaplan-Meier survival curves and performing Cox analyses. Cell experiments were carried out to examine the effects of miR-106b on OS cell proliferation, migration, and invasion. The expression of miR-106b was elevated in both OS tissues and cells compared with the expression in normal control tissues and cells (P<0.001). miR-106b expression was associated with metastasis (P=0.028) and Tumor-Node-Metastasis stage (P=0.017). Patients with high miR-106b expression levels had a poorer overall survival rate compared with those with low miR-106b expression levels (log-rank P=0.001). Multivariate Cox analyses indicated that miR-106b expression was an independent prognostic factor for patients with OS (hazard ratio=2.769; 95% confidence interval=1.369-5.599; P=0.005). The results of cell experiments implied that the upregulation of miR-106b could promote OS cell proliferation, migration and invasion, whereas the downregulation of miR-106b could suppress these functions (P<0.05). Taken together, this study's results indicated that the overexpression of miR-106b is associated with a poor prognosis for patients with OS and that overexpression promotes OS cell proliferation, migration, and invasion. This study may provide a novel prognostic biomarker and a candidate therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Ke Xu
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Xiong
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shoujun Zhao
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bin Wang
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
29
|
Long non-coding RNA SNHG5 promotes glioma progression via miR-205/E2F3 axis. Biosci Rep 2019; 39:BSR20190668. [PMID: 31292168 PMCID: PMC6639464 DOI: 10.1042/bsr20190668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years, many studies have reported on the abnormal expression and correlation of long non-coding RNAs (lncRNAs) in tumours. However, the accurate molecular mechanism of lncRNAs in glioma is still in its infancy. In the present study, we aimed to explore the molecular mechanism of small nucleolar RNA host gene 5 (SNHG5) in glioma progression. First, we found that SNHG5 expression was higher in glioma and was related to glioma glucose uptake, migration and invasion. Second, through a series of assays, we concluded that SNHG5 acts as a sponge for miR-205, which inhibits tumour growth in glioma by targeting E2F transcription factor 3 (E2F3). Third, using a xenograft mouse model, we demonstrated that SNHG5 regulates tumourigenesis in vivo. Taken together, our results show that the SNHG5/miR-205/E2F3 axis is involved in glioma progression and may provide a new therapeutic target for the diagnosis and therapy of glioma.
Collapse
|