1
|
Du F, Wu X, He Y, Zhao S, Xia M, Zhang B, Tong J, Xia T. Identification of an Amino Acid Metabolism Reprogramming Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Colon Cancer. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05049-4. [PMID: 39222169 DOI: 10.1007/s12010-024-05049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Colon cancer ranked third among the most frequently diagnosed cancers worldwide. Amino acid metabolic reprogramming was related to the occurrence and development of colon cancer. We looked for the amino acid metabolism genes (AMGs) associated with amino acid metabolism from molecular signatures database as prognostic markers and constructed amino acid metabolism scoring model (AMS). According to AMS, the patients were divided into high AMS and low AMS groups, and the prognostic characteristics, molecular phenotypes, somatic cell mutation characteristics, immune cell infiltration characteristics, and immunotherapy effect of the two groups were systematically analyzed. Finally, the compounds targeting AMGs were also screened. We screen out 6 prognostic AMGs (P < 0.05) and construct an AMS model based on them. K-M curve indicated that OS in low AMS group was significantly higher than that in high group (P < 0.05), which were validated in multiple datasets. And different AMS groups had different molecular phenotypes, somatic cell mutation characteristics and immune cell infiltration characteristics. Low AMS group had a better effect for immunotherapy. In addition, we predicted potential therapeutic compounds that could bind to AMGs target proteins. AMS model can be used as a hierarchical tool to evaluate the prognosis, immune infiltration characteristics and immunotherapy response ability of colon cancer. And the compounds screened based on AMGs may become new anti-tumor drugs.
Collapse
Affiliation(s)
- Fenqi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiangxin Wu
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi Province, People's Republic of China
| | - Yibo He
- Department of Acupuncture Massage & Rehabilitation, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong Province, People's Republic of China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinxue Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China.
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Jin R, Du F, Han X, Guo J, Song W, Xia Y, Yue X, Yang D, Tong J, Zhang Q, Liu Y. Prognostic Value of Insulin Growth Factor-Like Receptor 1 (IGFLR1) in Stage II and III Colorectal Cancer and Its Association with Immune Cell Infiltration. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05006-1. [PMID: 39141178 DOI: 10.1007/s12010-024-05006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
IGFLR1 is a novel biomarker, and some evidences suggested that is involved in the immune microenvironment of CRC. Here, we explored the expression of IGFLR1 and its association with the prognosis as well as immune cell infiltration in CRC, with the aim to provide a basis for further studies on IGFLR1. Immunohistochemical staining for IGFLR1, TIM-3, FOXP3, CD4, CD8, and PD-1 was performed in eligible tissues to analyze the expression of IGFLR1 and its association with prognosis and immune cell infiltration. Then, we screened colon cancer samples from TCGA and grouped patients according to IGFLR1-related genes. We also evaluated the co-expression and immune-related pathways of IGFLR1 to identify the potential mechanism of it in CRC. When P < 0.05, the results were considered statistically significant. IGFLR1 and IGFLR1-related genes were associated with the prognosis and immune cell infiltration (P < 0.05). In stage II and III CRC tissue and normal tissue, we found (1) IGFLR1 was expressed in both the cell membrane and cytoplasm and which was differentially expressed between cancer tissue and normal tissue. IGFLR1 expression was associated with the expression of FOXP3, CD8, and gender but was not associated with microsatellite instability. (2) IGFLR1 was an independent prognostic factor and patients with high IGFLR1 had a better prognosis. (3) A model including IGFLR1, FOXP3, PD-1, and CD4 showed good prognostic stratification ability. (4) There was a significant interaction between IGFLR1 and GATA3, and IGFLR1 had a significant co-expression with related factors in the INFR pathway. IGFLR1 has emerged as a new molecule related to disease prognosis and immune cell infiltration in CRC patients and showed a good ability to predict the prognosis of patients.
Collapse
Affiliation(s)
- Ran Jin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fenqi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinhao Han
- Department of Biostatistics, Public Health School of Harbin Medical University, Harbin, China
| | - Junnan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjie Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yixiu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Yue
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Yang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinxue Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Qiuju Zhang
- Health Management Centre, Harbin Medical University Cancer Hospital, Harbin, China.
- Department of Biostatistics, Public Health School of Harbin Medical University, Harbin, China.
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
3
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
4
|
Kang J, Hua P, Wu X, Wang B. Exosomes: efficient macrophage-related immunomodulators in chronic lung diseases. Front Cell Dev Biol 2024; 12:1271684. [PMID: 38655063 PMCID: PMC11035777 DOI: 10.3389/fcell.2024.1271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages, the predominant immune cells in the lungs, play a pivotal role in maintaining the delicate balance of the pulmonary immune microenvironment. However, in chronic inflammatory lung diseases and lung cancer, macrophage phenotypes undergo distinct transitions, with M1-predominant macrophages promoting inflammatory damage and M2-predominant macrophages fostering cancer progression. Exosomes, as critical mediators of intercellular signaling and substance exchange, participate in pathological reshaping of macrophages during development of pulmonary inflammatory diseases and lung cancer. Specifically, in inflammatory lung diseases, exosomes promote the pro-inflammatory phenotype of macrophages, suppress the anti-inflammatory phenotype, and subsequently, exosomes released by reshaped macrophages further exacerbate inflammatory damage. In cancer, exosomes promote pro-tumor tumor-associated macrophages (TAMs); inhibit anti-tumor TAMs; and exosomes released by TAMs further enhance tumor proliferation, metastasis, and resistance to chemotherapy. Simultaneously, exosomes exhibit a dual role, holding the potential to transmit immune-modulating molecules and load therapeutic agents and offering prospects for restoring immune dysregulation in macrophages during chronic inflammatory lung diseases and lung cancer. In chronic inflammatory lung diseases, this is manifested by exosomes reshaping anti-inflammatory macrophages, inhibiting pro-inflammatory macrophages, and alleviating inflammatory damage post-reshaping. In lung cancer, exosomes reshape anti-tumor macrophages, inhibit pro-tumor macrophages, and reshaped macrophages secrete exosomes that suppress lung cancer development. Looking ahead, efficient and targeted exosome-based therapies may emerge as a promising direction for treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Jianxiong Kang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peiyan Hua
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojing Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Wang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Rong YM, Xu YC, Chen XC, Zhong ME, Tan YX, Liang YF, Weng JR, Liu J, Wang XY, Luo DD, Bie YR, Chen X, Cai JW, Yu ZL, Zou YF. IGSF6 is a novel biomarker to evaluate immune infiltration in mismatch repair-proficient colorectal cancer. Sci Rep 2023; 13:20368. [PMID: 37989761 PMCID: PMC10663589 DOI: 10.1038/s41598-023-47739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Immunotherapy has dramatically changed the landscape of treatment for colorectal cancer (CRC), but currently lack of effective predictive biomarker, especially for tumors with mismatch repair (MMR) proficiency. The response of immunotherapy is associated with the cell-cell interactions in tumor microenvironment, encompassing processes such as cell-cell recognition, binding, and adhesion. However, the function of immunoglobulin superfamily (IGSF) genes in tumor immune microenvironment remains uncharacterized. This study quantified the immune landscape by leveraging a gene expression matrix from publicly accessible databases. The associations between IGSF6 gene expression and immune cell infiltration were assessed. The expression levels of IGSF6, CD8+ T cells, CD4+ T cells and CD68+ macrophage cells in cancer tissues from CRC patients and CRC cell lines were evaluated. IGSF6 was more highly expressed in CRC tumor tissues than adjacent normal tissues. And IGSF6 was significantly correlated with immune cell infiltration in MMR-proficient patients. Remarkably, MMR-proficient patients with high IGSF6 expression showed more sensitive to immunotherapy and chemotherapy than those with low IGSF6 expression. In summary, IGSF6 could be a novel biomarker to evaluate immune infiltration and predict therapeutic effect for MMR-proficient CRC.
Collapse
Affiliation(s)
- Yu-Ming Rong
- Department of VIP Region, Cancer Center of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Cheng Xu
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Xiao-Chuan Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min-Er Zhong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Xin Tan
- Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Fan Liang
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Jing-Rong Weng
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Xin-You Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Dan-Dong Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Yi-Ran Bie
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China
| | - Xi Chen
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China.
| | - Jia-Wei Cai
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China.
| | - Zhao-Liang Yu
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China.
| | - Yi-Feng Zou
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
6
|
Long non-coding RNA tumor protein 73 antisense RNA 1 influences an interaction between lysine demethylase 5A and promoter of tumor protein 73 to enhance the malignancy of colorectal cancer. Hum Cell 2022; 35:1512-1520. [PMID: 35896939 DOI: 10.1007/s13577-022-00740-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/16/2022] [Indexed: 01/23/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The aim of the present study was to explore the expression level of tumor protein 73 (TP73) in highly malignant CRC tumors and how the long non-coding RNA tumor protein 73 antisense RNA 1 (TP73-AS1) influences that transcription. We found that TP73-AS1 was highly expressed in malignant CRC samples in The Cancer Genome Atlas (TCGA) database. We also demonstrated TP73-AS1 was expressed in thirty samples of CRC tissues collected from China Medical University patients as well as in HCT116, RKO and SW480 CRC cell lines but not in HCoEpiC or CCD-18Co normal colon cells. Only wild-type TP73-AS1, but not any of its alternate splicing isoforms, was positively correlated with tumor malignancy. TP73-AS1 transcripts were shown to be located in cell nuclei especially in close proximity to the TP73 promoter in CRC cells, but not in normal colon cells. In addition, an interaction between lysine demethylase 5A (KDM5A) and TP73-AS1 in CRC cells, but not normal colon cells, and KDM5A localization on the TP73 promoter were influenced by TP73-AS1. Interestingly, the H3K4me3 level on the TP73 promoter was reduced, but was elevated by TP73-AS1 knockdown in CRC cells. In conclusion, these results suggest a novel epigenetic role of TP73-AS1 on histone demethylation that influences TP73 transcription, and shed light on malignancy in CRC.
Collapse
|
7
|
microRNA-155-3p delivered by M2 macrophages-derived exosomes enhances the progression of medulloblastoma through regulation of WDR82. J Transl Med 2022; 20:13. [PMID: 34983581 PMCID: PMC8728908 DOI: 10.1186/s12967-021-03156-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023] Open
Abstract
Objective Exosomes, membranous nanovesicles, naturally bringing proteins, mRNAs, and microRNAs (miRNAs), play crucial roles in tumor pathogenesis. This study was to investigate the role of miR-155-3p from M2 macrophages-derived exosomes (M2-Exo) in promoting medulloblastoma (MB) progression by mediating WD repeat domain 82 (WDR82). Methods miR-155-3p expression was detected by RT-qPCR. The relationship of miR-155-3p with clinicopathological features of MB patients was analyzed. M2-Exo were isolated and identified by TEM, NTA and Western blot. CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, and Transwell assay were performed to explore the role of miR-155-3p-enriched M2-Exo on the progression of MB cells. Luciferase assay were used to identify the relationship between miR-155-3p and WDR82. The effect of miR-155-3p-enriched M2-Exo on tumorigenesis of MB was confirmed by the xenograft nude mice model. Results miR-155-3p was up-regulated in MB tissues of patients and MB cell lines. High miR-155-3p expression was correlated with the pathological type and molecular subtype classification of MB patients. WDR82 was a direct target of miR-155-3p. miR-155-3p was packaged into M2-Exo. miR-155-3p-enriched M2-Exo promoted the progression of Daoy cells. miR-155-3p-enriched M2-Exo promoted in vivo tumorigenesis. Conclusion The study highlights that miR-155-3p-loaded M2-Exo enhances the growth of MB cells via down-regulating WDR82, which might provide a deep insight into MB mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03156-y.
Collapse
|
8
|
Qi J, Zhou L, Li D, Yang J, Wang H, Cao H, Huang Y, Zhang Z, Chang L, Zhu C, Zhan J, Yuan Y. Oncogenic role of ALX3 in cervical cancer cells through KDM2B-mediated histone demethylation of CDC25A. BMC Cancer 2021; 21:819. [PMID: 34266408 PMCID: PMC8284019 DOI: 10.1186/s12885-021-08552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Cell division cycle 25A (CDC25A) is a well-recognized regulator of cell cycle progression and is involved in cancer development. This work focused on the function of CDC25A in cervical cancer cell growth and the molecules involved. Methods A GEO dataset GSE63514 comprising data of cervical squamous cell carcinoma (CSCC) tissues was used to screen the aberrantly expressed genes in cervical cancer. The CDC25A expression in cancer and normal tissues was predicted in the GEPIA database and that in CSCC and normal cells was determined by RT-qPCR and western blot assays. Downregulation of CDC25A was introduced in CSCC cells to explore its function in cell growth and the cell cycle progression. The potential regulators of CDC25A activity and the possible involved signaling were explored. Results CDC25A was predicted to be overexpressed in CSCC, and high expression of CDC25A was observed in CSCC cells. Downregulation of CDC25A in ME180 and C33A cells reduced cell proliferation and blocked cell cycle progression, and it increased cell apoptosis. ALX3 was a positive regulator of CDC25A through transcription promotion. It recruited a histone demethylase, lysine demethylase 2B (KDM2B), to the CDC25A promoter, which enhanced CDC25A expression through demethylation of H3k4me3. Overexpression of ALX3 in cells blocked the inhibitory effects of CDC25A silencing. CDC25A was found as a positive regulator of the PI3K/Akt signaling pathway. Conclusion This study suggested that the ALX3 increased CDC25A expression through KDM2B-mediated demethylation of H3K4me3, which induced proliferation and cell cycle progression of cervical cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08552-7.
Collapse
Affiliation(s)
- Jinhong Qi
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Li Zhou
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Dongqing Li
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Jingyuan Yang
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, 130012, Jilin, People's Republic of China
| | - He Wang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Huifang Cao
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Yunlan Huang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Zhiming Zhang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Linlin Chang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Chenhao Zhu
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Juntong Zhan
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Yong Yuan
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Kim HG, Sung JY, Na K, Kim SW. Low H3K9me3 Expression Is Associated With Poor Prognosis in Patients With Distal Common Bile Duct Cancer. In Vivo 2021; 34:3619-3626. [PMID: 33144476 DOI: 10.21873/invivo.12207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Histone modification is associated with tumorigenesis and cancer progression. Recent studies have revealed the prognostic value of histone modification; however, its prognostic role in distal bile duct cancer remains unclear. PATIENTS AND METHODS We analyzed the expression of H3K9me3, H4K20me3, and H3K36me3 and its correlation with survival outcomes in resected samples from 88 patients with distal bile duct cancer. RESULTS Low expression rates of H3K9me3, H4K20me3, and H3K36me3 were significantly associated with poor overall survival (p=0.003, 0.008, and 0.047, respectively) and event-free survival (p=0.03 for H3K9m3). Additionally, low-expression of H3K9me3 was an independent poor prognostic indicator (p<0.001; HR=7.85; 95% CI=2.693-22.883). CONCLUSION H3K9me3 was an independent poor prognostic factor in distal common bile duct cancer. Our results suggest that histone markers are potential prognostic markers and provide better management for patients at risk for an aggressive course of disease.
Collapse
Affiliation(s)
- Han Gyeol Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - So-Woon Kim
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ye D, Xu H, Xia H, Zhang C, Tang Q, Bi F. Targeting SERT promotes tryptophan metabolism: mechanisms and implications in colon cancer treatment. J Exp Clin Cancer Res 2021; 40:173. [PMID: 34006301 PMCID: PMC8132442 DOI: 10.1186/s13046-021-01971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Serotonin signaling has been associated with tumorigenesis and tumor progression. Targeting the serotonin transporter to block serotonin cellular uptake confers antineoplastic effects in various tumors, including colon cancer. However, the antineoplastic mechanism of serotonin transporter inhibition and serotonin metabolism alterations in the absence of serotonin transporter have not been elucidated, especially in colon cancer, which might limit anti-tumor effects associating with targeting serotonin transporter. Methods The promotion in the uptake and catabolism of extracellular tryptophan and targeting serotonin transporter was detected by using quantitative reverse-transcription polymerase chain reaction, western blotting and liquid chromatography tandem mass spectrometry. Western blotting Immunoprecipitation and immunofluorescence was utilized to research the serotonylation of mTOR by serotonin and serotonin transporter inhibition. The primary mouse model, homograft model and tissue microarry was used to explore the tryptophan pathway in colon cancer. The cell viability assay, western blotting, xenograft and primary colon cancer mouse model were used to identify whether the combination of sertraline and tryptophan restriction had a synergistic effect. Results Targeting serotonin transporter through genetic ablation or pharmacological inhibition in vitro and in vivo induced a compensatory effect by promoting the uptake and catabolism of extracellular tryptophan in colon cancer. Mechanistically, targeting serotonin transporter suppressed mTOR serotonylation, leading to mTOR inactivation and increased tryptophan uptake. In turn, this process promoted serotonin biosynthesis and oncogenic metabolite kynurenine production through enhanced tryptophan catabolism. Tryptophan deprivation, or blocking its uptake by using trametinib, a MEK inhibitor, can sensitize colon cancer to selective serotonin reuptake inhibitors. Conclusions The present study elucidated a novel feedback mechanism involved in the regulation of serotonin homeostasis and suggested innovative strategies for selective serotonin reuptake inhibitors-based treatment of colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01971-1.
Collapse
Affiliation(s)
- Di Ye
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
11
|
Huang LY, Hsu DW, Pears CJ. Methylation-directed acetylation of histone H3 regulates developmental sensitivity to histone deacetylase inhibition. Nucleic Acids Res 2021; 49:3781-3795. [PMID: 33721015 PMCID: PMC8053100 DOI: 10.1093/nar/gkab154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
Hydroxamate-based lysine deacetylase inhibitors (KDACis) are approved for clinical use against certain cancers. However, intrinsic and acquired resistance presents a major problem. Treatment of cells with hydroxamates such as trichostatin A (TSA) leads to rapid preferential acetylation of histone H3 already trimethylated on lysine 4 (H3K4me3), although the importance of this H3K4me3-directed acetylation in the biological consequences of KDACi treatment is not known. We address this utilizing Dictyostelium discoideum strains lacking H3K4me3 due to disruption of the gene encoding the Set1 methyltransferase or mutations in endogenous H3 genes. Loss of H3K4me3 confers resistance to TSA-induced developmental inhibition and delays accumulation of H3K9Ac and H3K14Ac. H3K4me3-directed H3Ac is mediated by Sgf29, a subunit of the SAGA acetyltransferase complex that interacts with H3K4me3 via a tandem tudor domain (TTD). We identify an Sgf29 orthologue in Dictyostelium with a TTD that specifically recognizes the H3K4me3 modification. Disruption of the gene encoding Sgf29 delays accumulation of H3K9Ac and abrogates H3K4me3-directed H3Ac. Either loss or overexpression of Sgf29 confers developmental resistance to TSA. Our results demonstrate that rapid acetylation of H3K4me3 histones regulates developmental sensitivity to TSA. Levels of H3K4me3 or Sgf29 will provide useful biomarkers for sensitivity to this class of chemotherapeutic drug.
Collapse
Affiliation(s)
- Li-Yao Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Duen-Wei Hsu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
12
|
The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro. Cells 2021; 10:cells10030619. [PMID: 33799631 PMCID: PMC8001910 DOI: 10.3390/cells10030619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic regulators of transcriptional activity representing, an epigenetic modification of Histone H3. Previous reports have suggested that the broad H3K4me3 domain can be considered as an epigenetic signature for tumor-suppressor genes in human cells. G-protein-coupled estrogen receptor (GPER), a new membrane-bound estrogen receptor, acts as an inhibitor on cell growth via epigenetic regulation in breast and ovarian cancer cells. This study was conducted to evaluate the relationship of GPER and H3K4me3 in ovarian cancer tissue samples as well as in two different cell lines (Caov3 and Caov4). Silencing of GPER by a specific siRNA and two selective regulators with agonistic (G1) and antagonistic (G15) activity were applied for consecutive in vitro studies to investigate their impacts on tumor cell growth and the changes in phosphorylated ERK1/2 (p-ERK1/2) and H3K4me3. We found a positive correlation between GPER and H3K4me3 expression in ovarian cancer patients. Patients overexpressing GPER as well as H3K4me3 had significantly improved overall survival. Increased H3K4me3 and p-ERK1/2 levels and attenuated cell proliferation and migration were observed in Caov3 and Caov4 cells via activation of GPER by G1. Conversely, antagonizing GPER activity by G15 resulted in opposite effects in the Caov4 cell line. In conclusion, interaction of GPER and H3K4me3 appears to be of prognostic significance for ovarian cancer patients. The results of the in vitro analyses confirm the biological rationale for their interplay and identify GPER agonists, such as G1, as a potential therapeutic approach for future investigations.
Collapse
|
13
|
Lei J, Chen P, Zhang F, Zhang N, Zhu J, Wang X, Jiang T. M2 macrophages-derived exosomal microRNA-501-3p promotes the progression of lung cancer via targeting WD repeat domain 82. Cancer Cell Int 2021; 21:91. [PMID: 33546686 PMCID: PMC7866732 DOI: 10.1186/s12935-021-01783-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Exosomes are known to transmit microRNAs (miRNAs) to affect cancer progression, while the role of M2 macrophages-derived exosomes (M2 exosomes) conveying miR-501-3p in lung cancer (LC) remains unknown. We aim to explore the role of exosomal miR-501-3p in LC development via targeting WD repeat domain 82 (WDR82). Methods Lung cancer tissue and normal tissue specimens were collected, in which tumor-associated macrophages (TAM) were measured by immunohistochemistry. M2 macrophages were induced and treated with altered miR-501-3p, and then the exosomes were extracted and identified. MiR-501-3p and WDR82 expression in LC tissues and cell liens was determined. The predictive role of miR-501-3p in prognosis of LC patients was assessed, and the proliferation, colony formation ability, invasion, migration and apoptosis of the LC cells were determined. Targeting relationship between miR-501-3p and WDR82 was confirmed. Results TAM level was elevated in lung cancer tissues. MiR-501-3p was upregulated while WDR82 was downregulated in LC tissues and cell lines, and the M2 exosomes further upregulated miR-501-3p. M2 exosomes and exosomal miR-501-3p promoted LC cell growth. MiR-501-3p inhibition reversed the effect of M2 exosomes on LC cells. WDR82 was confirmed as a target gene of miR-501-3p. Conclusion M2 macrophages-derived exosomal miR-501-3p promotes the progression of LC via downregulating WDR82.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Peng Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Feng Zhang
- Department of Oncology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shanxi, China
| | - Na Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China.
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China.
| |
Collapse
|
14
|
ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin's lymphoma and testicular cancer cells. Cell Death Dis 2020; 11:1019. [PMID: 33257682 PMCID: PMC7705021 DOI: 10.1038/s41419-020-03231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
It is of clinical importance to identify biomarkers predicting the efficacy of DNA damaging drugs (genotoxins) so that nonresponders are not unduly exposed to the deleterious effects of otherwise inefficient drugs. Here, we initially focused on the bleomycin genotoxin because of the limited information about the genes implicated in the sensitivity or resistance to this compound. Using a whole-genome CRISPR/Cas9 gene knockout approach, we identified ASH2L, a core component of the H3K4 methyl transferase complex, as a protein required for bleomycin sensitivity in L1236 Hodgkin lymphoma. Knocking down ASH2L in these cells and in the NT2D1 testicular cancer cell line rendered them resistant to bleomycin, etoposide, and cisplatin but did not affect their sensitivity toward ATM or ATR inhibitors. ASH2L knockdown decreased cell proliferation and facilitated DNA repair via homologous recombination and nonhomologous end-joining mechanisms. Data from the Tumor Cancer Genome Atlas indicate that patients with testicular cancer carrying alterations in the ASH2L gene are more likely to relapse than patients with unaltered ASH2L genes. The cell models we have used are derived from cancers currently treated either partially (Hodgkin’s lymphoma), or entirely (testicular cancer) with genotoxins. For such cancers, ASH2L levels could be used as a biomarker to predict the response to genotoxins. In situations where tumors are expressing low levels of ASH2L, which may allow them to resist genotoxic treatment, the use of ATR or ATM inhibitors may be more efficacious as our data indicate that ASH2L knockdown does not affect sensitivity to these inhibitors.
Collapse
|
15
|
Wang Y, Shang S, Yu K, Sun H, Ma W, Zhao W. miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2. PeerJ 2020; 8:e9704. [PMID: 33282547 PMCID: PMC7694553 DOI: 10.7717/peerj.9704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background The present study is to screen lymph node metastasis-related microRNAs (miRNAs) in lung adenocarcinoma (LUAD) and uncover their underlying mechanisms. Methods The miRNA microarray dataset was collected from the Gene Expression Omnibus database under accession number GSE64859. The differentially expressed miRNAs (DEMs) were identified using a t-test. Target genes of DEMs were predicted through the miRWalk2.0 database. The function of these target genes was annotated with the clusterProfiler and the Database for Annotation, Visualization and Integrated Discovery (DAVID) tools. Protein-protein interaction network was established using the STRING database to extract hub target genes. The expressions and associations with survival and lymph node metastasis of miRNAs and target genes were validated by analysis of The Cancer Genome Atlas (TCGA) dataset. Results Eight DEMs were identified between lymph node metastasis and non-metastasis samples of GSE64859 dataset. miRNA-target gene pairs were predicted between six DEMs and 251 target genes (i.e. hsa-miR-224-PRPF4B, hsa-miR-147b-WDR82 and hsa-miR-31-NR3C2). The clusterProfiler analysis showed WDR82 was involved in the mRNA surveillance pathway, while the GO enrichment analysis using the DAVID database indicated PRPF4B participated in the protein phosphorylation and NR3C2 was related with the transcription, DNA-templated. WDR82 and PRPF4B may be hub genes because they could interact with others. Two DEMs (miR-31-5p and miR-31-3p) and 45 target genes (including PRPF4B and NR3C2) were significantly associated with overall survival. The expressions of miR-224 and miR-147b were validated to be upregulated, while WDR82, PRPF4B and NR3C2 were downregulated in lymph node metastasis samples of TCGA datasets compared with non-metastasis samples. Also, there were significantly negative expression correlations between miR-147b and WDR82, between miR-224 and PRPF4B, as well as between miR-31 and NR3C2 in LUAD samples. Conclusions The present study identified several crucial miRNA-mRNA interaction pairs, which may provide novel explanations for the lymph node metastasis and poor prognosis for LUAD patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Shengtao Shang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Kun Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Wenduan Ma
- Department of Thoracic Surgery, Baicheng Hospital of Traditional Chinese Medicine, Jilin, China
| | - Wei Zhao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
16
|
BATF3 promotes malignant phenotype of colorectal cancer through the S1PR1/p-STAT3/miR-155-3p/WDR82 axis. Cancer Gene Ther 2020; 28:400-412. [PMID: 33057139 DOI: 10.1038/s41417-020-00223-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022]
Abstract
Encouraging insight into novel underlying mechanisms targeting abnormal biological pathways in colorectal cancer (CRC) are currently under investigation, edging closer and closer to clinical use. Of note, basic leucine zipper ATF-like transcription factor 3 (BATF3) has been implicated with the tumorigenicity of CRC. The current study aimed to elucidate the oncogenic BATF3-mediated S1PR1/p-STAT3/miR-155-3p/WDR82 axis in CRC. Initially, clinical samples of CRC tissues as well as CRC cell lines were collected to evaluate the expression patterns of BATF3/S1PR1/p-STAT3/miR-155-3p/WDR82. Dual luciferase assay was employed to assess the binding affinity between miR-155-3p and WDR82. Artificial modulation of BATF3 (down- and overexpression) was conducted to measure the malignant phenotypes of CRC cells, while tumor-bearing mice were examined to determine the in vivo effects. BATF3 facilitated the proliferative, migratory, and invasive potential of CRC cells by upregulating S1PR1. Besides, the stimulatory effect of S1PR1 was realized via restored p-STAT3 expression. Furthermore, p-STAT3 was evidenced to heighten the expression of miR-155-3p and subsequently restrict the expression of its target gene WDR82. The in vivo assays provided data further substantiating the in vitro findings that inactivation of the BATF3/S1PR1/p-STAT3/miR-155-3p/WDR82 axis suppresses CRC tumor growth. Collectively, the results of the present study emphasize the oncogenic function of BATF3 illustrated by the reinforcement the biological processes of proliferation, invasion, as well as the metastatic capacity of CRC cells through activating the S1PR1/p-STAT3/miR-155-3p/WDR82 axis.
Collapse
|
17
|
Hu Y, Cheng L, Zhong W, Chen M, Zhang Q. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Med Sci Monit 2019; 25:9563-9571. [PMID: 31838482 PMCID: PMC6929537 DOI: 10.12659/msm.918491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Septic shock occurs when sepsis is associated with critically low blood pressure, and has a high mortality rate. This study aimed to undertake a bioinformatics analysis of gene expression profiles for risk prediction in septic shock. Material/Methods Two good quality datasets associated with septic shock were downloaded from the Gene Expression Omnibus (GEO) database, GSE64457 and GSE57065. Patients with septic shock had both sepsis and hypotension, and a normal control group was included. The differentially expressed genes (DEGs) were identified using OmicShare tools based on R. Functional enrichment of DEGs was analyzed using DAVID. The protein-protein interaction (PPI) network was established using STRING. Survival curves of key genes were constructed using GraphPad Prism version 7.0. Each putative central gene was analyzed by receiver operating characteristic (ROC) curves using MedCalc statistical software. Results GSE64457 and GSE57065 included 130 RNA samples derived from whole blood from 97 patients with septic shock and 33 healthy volunteers to obtain 975 DEGs, 455 of which were significantly down-regulated and 520 were significantly upregulated (P<0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified significantly enriched DEGs in four signaling pathways, MAPK, TNF, HIF-1, and insulin. Six genes, WDR82, ASH1L, NCOA1, TPR, SF1, and CREBBP in the center of the PPI network were associated with septic shock, according to survival curve and ROC analysis. Conclusions Bioinformatics analysis of gene expression profiles identified four signaling pathways and six genes, potentially representing molecular mechanisms for the occurrence, progression, and risk prediction in septic shock.
Collapse
Affiliation(s)
- Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Lingxia Cheng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
18
|
Li Y, Chen L, Feng L, Zhu M, Shen Q, Fang Y, Liu X, Zhang X. NEK2 promotes proliferation, migration and tumor growth of gastric cancer cells via regulating KDM5B/H3K4me3. Am J Cancer Res 2019; 9:2364-2378. [PMID: 31815040 PMCID: PMC6895449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
The mechanisms of how Never in Mitosis (NIMA) Related Kinase 2 (NEK2) coordinates altered signaling to malignant gastric cancer (GC) transformation remain unclear. Overexpression of NEK2 and KDM5B were observed in GC cell lines with high sensitivity to NEK2 inhibitors. Here we investigated the biological behaviors of NEK2 and the possible mechanisms of regulative effects of NEK2 on KDM5B in GC cell lines both in vitro and in vivo. The results showed that NEK2 and KDM5B were highly expressed in most of the 10 GC cell lines. NEK2 knockdown in MGC-803 cells led to suppression of cell proliferation and migration in vitro and tumor growth in vivo, while NEK2 overexpression in BGC-823 cells exhibited the reverse biological effect. When NEK2 was inhibited by NEK2 inhibitors or shNEK2, cellular KDM5B level decreased and H3K4me3 level increased, while overexpression of NEK2 resulted in enhanced KDM5B expression and decreased H3K4me3 level. Though direct interaction between NEK2 and KDM5B was excluded, NEK2 could regulate KDM5B/H3K4me3 expression through β-catenin/Myc both in vitro and in vivo, which was double confirmed by c-myc and KDM5B inhibitor experiments. Taken together, our study showed that NEK2 was highly expressed in GC cell lines and related to promoting cell proliferation, migration and tumor growth. A NEK2/β-catenin/Myc/KDM5B/H3K4me3 signaling pathway may contribute to the important carcinogenic role of NEK2-mediated malignant behaviors in GC.
Collapse
Affiliation(s)
- Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lijuan Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lixing Feng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Mengli Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Qiang Shen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| |
Collapse
|
19
|
EBV infection is associated with histone bivalent switch modifications in squamous epithelial cells. Proc Natl Acad Sci U S A 2019; 116:14144-14153. [PMID: 31235597 DOI: 10.1073/pnas.1821752116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.
Collapse
|
20
|
Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J, Lewandowska MA. Prognostic and Predictive Epigenetic Biomarkers in Oncology. Mol Diagn Ther 2019; 23:83-95. [PMID: 30523565 PMCID: PMC6394434 DOI: 10.1007/s40291-018-0371-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic patterns, such as DNA methylation, histone modifications, and non-coding RNAs, can be both driver factors and characteristic features of certain malignancies. Aberrant DNA methylation can lead to silencing of crucial tumor suppressor genes or upregulation of oncogene expression. Histone modifications and chromatin spatial organization, which affect transcription, regulation of gene expression, DNA repair, and replication, have been associated with multiple tumors. Certain microRNAs (miRNAs), mainly those that silence tumor suppressor genes and occur in a greater number of copies, have also been shown to promote oncogenesis. Multiple patterns of these epigenetic factors occur specifically in certain malignancies, which allows their potential use as biomarkers. This review presents examples of tests for each group of epigenetic factors that are currently available or in development for use in early cancer detection, prediction, prognosis, and response to treatment. The availability of blood-based biomarkers is noted, as they allow sampling invasiveness to be reduced and the sampling procedure to be simplified. The article stresses the role of epigenetics as a crucial element of future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ewelina Nalejska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Kubiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Wojtysiak
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Żołna
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marzena Anna Lewandowska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Thoracic Surgery and Tumors, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| |
Collapse
|