1
|
Gholami M, Zoughi M, Larijani B, Abdollahzadeh R, Taslimi R, Rahmani Z, Kazemeini A, Behboo R, Razi F, Bastami M, Hasani‐Ranjbar S, Amoli MM. The role of inflammatory miRNA-mRNA interactions in PBMCs of colorectal cancer and obesity patients. Immun Inflamm Dis 2022; 10:e702. [PMID: 36301024 PMCID: PMC9609448 DOI: 10.1002/iid3.702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Inflammation is a critical hallmark in obesity and colorectal cancer (CRC). This study aimed to investigate effective microRNA (miRNA)–messenger RNA (mRNA) interactions on inflammatory networks involved in obesity and CRC. Methods The literature searches were applied to identify genes expression reported on peripheral blood mononuclear cells (PBMCs) and/or blood of CRC subjects and to find inflammatory miRNA in blood samples. Furthermore, bioinformatics analysis was utilized to find inflammatory miRNA:mRNA interactions of the genes. Finally, a case‐control study was set to investigate the expression of LAMC1 and GNB3 genes besides miR‐10b, miR‐506‐3p, miR‐150‐5p, and miR‐124‐3p in CRC and control subjects. Results The expression of LAMC1 gene in healthy control groups was associated with body mass index (BMI) (p < .05). The level of miR‐10b (p < .001), miR‐506 (p < .001), and miR‐124 (p <. 001) were significantly increased in PBMCs of CRC patients, while they were not associated with BMI. The level of miR‐150 was associated with BMI in healthy subjects (p < .05). Conclusions The changes in the level of miR‐506 and miR‐124 in CRC patients may be associated with the regulatory role of these miRNAs on LAMC1 expression. The LAMC1 may be related to BMI, however, more observational studies on other populations are needed.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Rasoul Abdollahzadeh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Zeinab Rahmani
- Department of Gastroenterology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
| | - Alireza Kazemeini
- Department of General Surgery, Imam Khomeini Hospital, School of MedicineTehran University of Medical SciencesTehranIran
| | - Roobic Behboo
- Hazrate Rasoole Akram HospitalIran University of Medical ScienceTehranIran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular‐Cellular sciences instituteTehran University of Medical SciencesTehranIran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Shirin Hasani‐Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Chen N, Meng Z, Song J, Kong L, Zhang Y, Guo S, Zhang X, Lu X, Jiang L, Chen R, Jiao Z, Zhao L. miR-506 in patients with chronic myeloid leukemia and its effect on apoptosis of K562 cells. Am J Transl Res 2021; 13:9413-9420. [PMID: 34540060 PMCID: PMC8430173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the expression of miR-506 in chronic myeloid leukemia (CML) and its influence on the biological function of CML cells. METHODS Altogether 84 CML patients from February 2012 to September 2014 were obtained as the observation group (OG), and 71 healthy people were taken as the control group (CG). miR-506 was tested using RT-qPCR, and the 5-year survival of patients with high and low expression of miR-506 was compared with the median value of miR-506 as the limit. ROC curve was applied to detect the value of miR-506 in diagnosing CML and predicting the 5-year survival of patients, and K562 cell line was transfected with miR-506 inhibitor and miR-506 mimic for observing its effects on the cell proliferation and apoptosis. RESULTS miR-506 in CML patients was evidently lower than that in healthy people, the AUC of diagnosis of miR-506 was 0.883, the total survival of patients with low miR-506 was evidently lower than those with high miR-506, and the AUC of predicted survival of patients was 0.778. The proliferation of cells transfected with miR-506 inhibitor was promoted, the apoptosis and the survival rate reduced. CONCLUSION miR-506 is evidently reduced in CML, and may be applied as a diagnostic and predictive treatment for CML and 5-year related survival; it can also can hinder the viability of K562 cells and promote apoptosis.
Collapse
Affiliation(s)
- Nafei Chen
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Zhen Meng
- Department of Hematology, Hudson International Peace Hospital, Heng Shui City People’s HospitalHengshui 053000, Hebei Province, China
| | - Jiaojie Song
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Lingfang Kong
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Yehua Zhang
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Suli Guo
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Xiaokun Zhang
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Xin Lu
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Licai Jiang
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Ran Chen
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Zongjiu Jiao
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| | - Liyun Zhao
- Department of Hematology, Xingtai People’s HospitalXingtai 054000, Hebei Province, China
| |
Collapse
|
3
|
AbouAitah K, Hassan HA, Swiderska-Sroda A, Gohar L, Shaker OG, Wojnarowicz J, Opalinska A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Targeted Nano-Drug Delivery of Colchicine against Colon Cancer Cells by Means of Mesoporous Silica Nanoparticles. Cancers (Basel) 2020; 12:E144. [PMID: 31936103 PMCID: PMC7017376 DOI: 10.3390/cancers12010144] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Antimitotics are important anticancer agents and include the natural alkaloid prodrug colchicine (COL). However, a major challenge of using COL as an anticancer drug is its cytotoxicity. We developed a novel drug delivery system (DDS) for COL using mesoporous silica nanoparticles (MSNs). The MSNs were functionalized with phosphonate groups, loaded with COL, and coated with folic acid chitosan-glycine complex. The resulting nanoformulation, called MSNsPCOL/CG-FA, was tested for action against cancer and normal cell lines. The anticancer effect was highly enhanced for MSNsPCOL/CG-FA compared to COL. In the case of HCT116 cells, 100% inhibition was achieved. The efficiency of MSNsPCOL/CG-FA ranked in this order: HCT116 (colon cancer) > HepG2 (liver cancer) > PC3 (prostate cancer). MSNsPCOL/CG-FA exhibited low cytotoxicity (4%) compared to COL (~60%) in BJ1 normal cells. The mechanism of action was studied in detail for HCT116 cells and found to be primarily intrinsic apoptosis caused by an enhanced antimitotic effect. Furthermore, a contribution of genetic regulation (metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1), and microRNA (mir-205)) and immunotherapy effects (angiopoietin-2 (Ang-2 protein) and programmed cell death protein 1 (PD-1) was found. Therefore, this study shows enhanced anticancer effects and reduced cytotoxicity of COL with targeted delivery compared to free COL and is a novel method of developing cancer immunotherapy using a low-cost small-molecule natural prodrug.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Heba A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Lamiaa Gohar
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11511, Egypt;
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Agnieszka Opalinska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland;
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| |
Collapse
|